
COMPLEXITY, HEURISTIC, AND SEARCH ANALYSIS

FOR THE GAMES OF CROSSINGS AND EPAMINONDAS

THESIS

David W. King Jr, Captain, USAF

AFIT-ENG-14-M-44

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, the Department of Defense, or the United

States Government.

This material is declared a work of the U.S. Government and is not subject to copyright

protection in the United States.

AFIT-ENG-14-M-44

COMPLEXITY, HEURISTIC, AND SEARCH ANALYSIS

FOR THE GAMES OF CROSSINGS AND EPAMINONDAS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

David W. King Jr, B.S.C.S.

Captain, USAF

March 2014

DISTRIBUTION STATEMENT A:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENG-14-M-44

COMPLEXITY, HEURISTIC, AND SEARCH ANALYSIS

FOR THE GAMES OF CROSSINGS AND EPAMINONDAS

David W. King Jr, B.S.C.S.

Captain, USAF

Approved:

//signed//

LTC Robert J. McTasney, PhD (Chairman)

//signed//

Maj Kennard R. Laviers, PhD (Member)

//signed//

Gilbert L. Peterson, PhD (Member)

4 Mar 2014

Date

4 Mar 2014

Date

4 Mar 2014

Date

AFIT-ENG-14-M-44
Abstract

Games provide fertile research domains for algorithmic research. Often, game research

helps solve real-world problems through the testing and refinement of search algorithms

in game domains. Other times, game research finds limits for certain algorithms. For

example, the game of Go proved intractable for the Min-Max with Alpha-Beta pruning

algorithm leading to the popularity of Monte-Carlo based search algorithms. Although

effective in Go, and game domains once ruled by Alpha-Beta such as Lines of Action,

Monte-Carlo methods appear to have limits too as they fall short in tactical domains such

as Hex and Chess. In a continuation of this type of research, two new games, Crossings and

Epaminondas, are presented, analyzed and used to test two Monte-Carlo based algorithms:

Upper Confidence Bounds applied to Trees (UCT) and Heuristic Guided UCT (HUCT).

Results indicate that heuristic knowledge can positively affect UCT’s performance in the

lower complexity domain of Crossings. However, both agents perform worse in the higher

complexity domain of Epaminondas. This identifies Epaminondas as another domain that

poses difficulties for Monte Carlo agents.

iv

Para mi mariposa

v

Table of Contents

Page

Abstract . iv

Dedication . v

Table of Contents . vi

List of Figures . ix

List of Tables . xi

List of Acronyms . xii

I. Introduction . 1

1.1 Research Questions . 2

1.2 Impact . 3

1.3 Thesis Outline . 4

II. Literature Review . 5

2.1 Games in Artificial Intelligence . 5

2.2 Game Study . 6

2.3 Algorithm Development and Popular Games 7

2.4 Solving Games . 9

2.5 Min-Max . 11

2.6 Min-Max with Alpha-Beta Pruning . 12

2.7 Alpha-Beta Enhancements . 16

2.7.1 Move Ordering . 16

2.7.2 Killer Moves . 17

2.7.3 History Heuristic . 17

2.7.4 Transposition Tables . 18

2.8 Monte-Carlo Based Search Methods . 19

2.8.1 Upper Confidence Bounds Applied to Trees 21

2.9 Monte Carlo Enhancements . 22

2.9.1 Rapid Action Value Estimation . 22

2.9.2 Heuristic Guided UCT . 23

2.9.3 Threading . 24

2.10 Rules and Strategies for Crossings and Epaminondas 25

vi

Page

2.11 Crossings . 25

2.11.1 Overview . 25

2.11.2 Phalanxes and Movement . 26

2.11.3 Capturing . 27

2.11.4 Objective . 27

2.11.5 Basic Strategies . 28

2.11.5.1 Softening . 28

2.11.5.2 Cutting . 29

2.11.5.3 Channels . 29

2.11.5.4 Close Gaps . 29

2.11.5.5 Blocking . 30

2.11.5.6 Sweeping . 30

2.12 Epaminondas . 30

2.12.1 Overview . 30

2.12.2 Phalanxes and Movement . 31

2.12.3 Capture . 32

2.12.4 Objective . 33

2.12.5 Puzzles . 35

2.12.6 Basic Strategies . 37

2.12.6.1 Softening . 37

2.12.6.2 Cutting . 37

2.12.6.3 Channels . 37

2.12.6.4 Close Gaps . 38

2.12.6.5 Sweepers . 38

2.12.6.6 Piece Domination . 38

2.13 Summary . 38

III. Methodology . 39

3.1 Research Goals . 39

3.2 Agent Development . 39

3.2.1 Mobility . 41

3.2.2 Material Dominance . 42

3.2.3 Crossing . 42

3.2.4 Center of Mass . 42

3.2.5 Home Row Defense . 42

3.2.6 Territory . 43

3.3 State-Space and Game-Tree Complexity Analysis 43

3.4 Monte Carlo Methods . 45

3.5 Environment . 47

3.6 Performance Metrics . 47

3.7 Summary . 47

vii

Page

IV. Experiments and Model Design . 49

4.1 Experiment One: Agent Development . 49

4.2 Experiment Two: Complexity Development 50

4.3 Experiment Three: Assessment of Monte-Carlo Based Agents 50

4.4 Summary . 51

V. Results and Data Analysis . 52

5.1 Game Playing Agents . 52

5.2 Properties of Crossings . 53

5.2.1 State-Space Complexity . 53

5.2.2 Game-Tree Complexity . 53

5.2.3 Game Observations . 56

5.3 Properties of Epaminondas . 57

5.3.1 State-Space Complexity . 57

5.3.2 Game-Tree Complexity . 57

5.3.3 Game Observations . 59

5.4 Domain Comparisons . 60

5.5 Monte-Carlo Based Search . 60

5.5.1 Crossings . 60

5.5.2 Epaminondas . 69

5.6 Observations . 77

5.7 Summary . 79

VI. Conclusions . 81

6.1 Are Crossings and Epaminondas solvable? 81

6.2 Does move complexity impact game complexity? 81

6.3 With respect to MC-based search algorithms such as Upper Confidence

Bounds Applied to Trees (UCT), does game complexity impact the

algorithm’s performance? . 82

6.4 Does adding heuristic knowledge to UCT improve its performance? 83

6.5 Do UCT and HUCT perform better as time intervals increase? 83

6.6 General Conclusions . 83

6.7 Future Work . 84

Appendix: Appendix A . 86

Bibliography . 88

viii

List of Figures

Figure Page

2.1 Min-Max . 15

2.2 Min-Max with Alpha Beta Pruning . 15

2.3 MC Based Search – One Iteration [10]. 20

2.4 Crossings Initial Position. 26

2.5 Example Phalanx Moves. 26

2.6 Crossings Capture Example. 27

2.7 Black to Move – Game is a draw. 28

2.8 White to Move – After capturing A7, White wins. 29

2.9 Epaminondas Starting Position. 31

2.10 Example Phalanx Moves in Gray. 31

2.11 After Capture: [E2,D2,C2,B2] x [F2,G2,H2]. 33

2.12 White crosses. [H2,H3,H4] - [H1]. 34

2.13 Black to Answer. 34

2.14 Puzzle 1: White to win in three. 35

2.15 Puzzle 2: White to win in two. 36

2.16 Puzzle 3: White to win in four. 36

5.1 Crossings Game Lengths. 55

5.2 Crossings Branching Factor. 55

5.3 Crossings Branching Factor Over Time. 56

5.4 Epaminondas Game Lengths. 58

5.5 Epaminondas Branching Factor. 58

5.6 Epaminondas Branching Factor Over Time. 59

5.7 Crossings White Win % (Error bars are 95% confidence interval of the mean). . 61

ix

Figure Page

5.8 Crossings Black Win % (Error bars are 95% confidence interval of the mean). . 63

5.9 Crossings White Win % vs Average Simulations. 65

5.10 Crossings Black Win % vs Average Simulations. 66

5.11 Crossings White Win % vs Game Length. 68

5.12 Crossings Black Win % vs Game Length. 69

5.13 Epaminondas White Win % (95 % Confidence Interval of the Mean). 70

5.14 Epaminondas Black Win % (95% Confidence Interval of the Mean). 72

5.15 Epaminondas White Win % vs Sims per Ply. 74

5.16 Epaminondas Black Win % vs Sims per Ply. 75

5.17 Epaminondas White Win % vs Game Length. 76

5.18 Epaminondas Black Win % vs Game Length. 77

x

List of Tables

Table Page

5.1 Crossings Win/Loss/Draw Percentages: Agents Playing as White. 61

5.2 Crossings T-Tests: Agents as White. 62

5.3 Crossings Win/Loss/Draw Percentages: Agents Playing as Black. 63

5.4 Crossings T-Tests: Agents as Black. 64

5.5 Epaminondas Win/Loss/Draw Percentages: Agents Playing as White. 70

5.6 Epaminondas T-Tests: Agents as White. 71

5.7 Epaminondas Win/Loss/Draw Percentages: Agents Playing as Black. 73

5.8 Epaminondas T-Tests: Agents as Black. 73

A.1 Number of Possible Positions Per Pieces on Board for Crossings 86

A.2 Number of Possible Positions Per Pieces on Board for Epaminondas 87

xi

List of Acronyms

Acronym Definition

MC Monte-Carlo

AI Artificial Intelligence

UCT Upper Confidence Bounds applied to Trees

HUCT Heuristic Guided UCT

LOA Lines of Action

UCB Upper Confidence Bound

RAVE Rapid Action Value Estimation

MIA Maastricht in Action

GGP General Game Playing

xii

COMPLEXITY, HEURISTIC, AND SEARCH ANALYSIS

FOR THE GAMES OF CROSSINGS AND EPAMINONDAS

I. Introduction

Games provide test domains for Artificial Intelligence (AI) research and researchers

often seek out new games to further algorithmic research in the community. Game

research in the AI community often results in real-world applications of game theory in

various environments. In addition, game research can identify search algorithm limits.

For example, Go proved intractable for the commonly used Min-Max with Alpha-Beta

pruning (αβ) algorithm, resulting in the introduction of Monte-Carlo (MC) based search

[7]. Although highly popular today, even MC based algorithms appear to have limitations

[9, 36]. Why do certain games, such as Hex and Chess, inhibit MC based search?

One proposed answer is that the commonly used Upper Confidence Bounds applied

to Trees (UCT) algorithm is overly optimisitic in its move selection, resulting in a smaller

exploration of the game tree [15]. Although Coquelin and Munos [15] modify the baseline

UCT algorithm by cutting suboptimal branches from the search space, it has yet to gain

traction in the AI community and warrants further investigation. This thesis extends this

type of algorithmic analysis. In an effort to improve UCT’s effectiveness, two MC based

algorithms were tested across two new game domains: Crossings and Epaminondas.

Although created in the 1970’s, Crossings and Epaminondas have escaped the

community’s notice. In order to understand where these games lie in the pantheon of

currently researched games, agents for each game were constructed. These agents provided

the information needed to derive the state-space and game-tree complexities of both games.

The data indicates that Crossings has a slightly larger state-space and game-tree complexity

1

than the well researched game of Lines of Action (LOA) while Epaminondas provides a new

testing domain between Chess and Go.

After construction of game playing agents for each game, these domains served as

testing environments for UCT and a modified version of UCT called Heuristic Guided UCT

(HUCT). The HUCT algorithm modifies the basic UCT formula by adding the heuristic

value of the current board state to both the move’s current win rate and Upper Confidence

Bound (UCB) terms. Each algorithm plays against a baseline Min-Max αβ agent with turns

set to 1, 5, 10, and 15 second time intervals. Data indicates that adding heuristic knowledge

increases the effectiveness of UCT in Crossings in both the 10 and 15 second categories.

However, both UCT and HUCT performed poorly in Epaminondas across all time intervals.

These results propose two main conclusions. One, MC based search agents perform well,

and can even outperform Min-Max αβ based agents, in Crossings. However, they do

not perform well in the tightly related game of Epmainondas; identifying Epaminondas

as another domain that confounds MC based search agents. The poor performance in

Epaminondas may be due to the lack of a good heuristic evaluator, or that the combination

of the game’s complexity and tactical nature may lead MC agents towards bad parts of the

search tree. Further investigation is necessary to understand why the MC agents struggled

in Epaminondas.

1.1 Research Questions

The previous section introduced the basic premises of game research, the limitations

of current algorithms in use today, and a brief overview of research into Crossings and

Epaminondas. This section defines five specific research questions answered by the

research presented.

1. How complex are Crossings and Epaminondas?

2. Do their unique movement rules impact their complexity?

2

3. Are Crossings and Epaminondas solvable?

4. Does adding heuristic knowledge to UCT improve its performance?

5. Does game complexity impact MC based algorithm performance?

These simple questions belie the complexity faced in answering them. First, answering

questions one through three involves constructing Min-Max αβ agents to play each game.

Information to build heuristics to guide the search agent is sparse, residing in two main

sources. Therefore, heuristic development relies on trying heuristics from similar games

and strategies found through human game play. Refinement of baseline heuristics becomes

imperative to achieve a novice level of play in order to answer all the questions presented.

Questions four and five become answerable after these agents achieve a novice level of

play since HUCT can then use the same heuristic function contained in the Min-Max αβ

agent to play each game. Comparison of UCT and HUCT performance across the domains

relies on earlier work to establish the difference in complexities between Crossings and

Epaminondas.

1.2 Impact

The research presented adds two new game domains to the AI field. Their unique

moves lead to greater game complexity and provide two new research areas to test MC

based algorithms. Furthermore, since research into these areas is brand new, deriving

their state-space and game-tree complexities provides a categorization for both games. The

discovery of MC failure in Epaminondas is noteworthy. It adds another domain to the AI

field for future research and testing to help discover the underlying cause of such failures.

Finally, all derived heuristics and saved game states provide starting points for any future

work concerning either game.

3

1.3 Thesis Outline

Chapter II presents an overview of game study in Artificial Intelligence, motivation

for game study, and the elements of game solving. In addition, it describes the most

popular search algorithms in use today, and introduces the rules and basic strategies

for Crossings and Epaminondas. Chapter III outlines the methodology used to answer

each research question. Chapter IV describes the design and development of the

Crossings and Epaminondas game playing agents as well as descriptions of the experiments

conducted. Chapter V presents results of those experiments and analyzes the collected

data. Finally, Chapter VI presents conclusions drawn from the completed experiments and

recommendations for future work.

4

II. Literature Review

Artificial Intelligence (AI) has a rich history of gaming research with applications

extending beyond building game playing agents. Often breakthroughs in game research

lead to real-world solutions. This chapter reviews the history of gaming research in Artifical

Intelligence (Section 2.1) and why games are studied (Section 2.2). Section 2.3 discusses

how games are played and solved. An overview of current search algorithms: Min-Max,

Min-Max with Alpha-Beta (αβ) pruning, and Monte Carlo based search follows. Finally,

Sections 2.9 - 2.10 provide the rules and basic strategies associated with Crossings and

Epaminondas

2.1 Games in Artificial Intelligence

AI has a rich history of gaming research. Ever since Turing asked “can machines

think?” researchers have sought to build machines capable of challenging, if not besting,

human players [48]. Arthur Samuel took up Turing’s challenge and constructed a Checkers

playing agent in 1958 [41]. His groundbreaking work, while minimally successful, began a

long tradition of researching games. Eventually, this led to Schaeffer et al. [43] solving the

game of Checkers in 2007. The penultimate event for AI research seemed to occur when

Deep Blue defeated the World Chess Champion Kasparov in 1997 [26]. However, defeating

the World Champion did not usher in a new age of computer “thinking”. Quite the contrary,

researchers began pursuing domains where Min-Max αβ techniques proved deficient [31].

This push in a new direction led to Monte-Carlo (MC) based agents. MC based agents

excited the community because they needed nothing more than the legal moves of the

game to be effective. It garnered attention when they produced agents that could play Go

competently on 9 x 9 boards, eventually leading to agents playing on 19 x 19 boards at an

amateur level [31].

5

The success of MC agents for the game of Go started a new conversation in AI

research: can MC techniques work for other games where Min-Max αβ is king? Can it

best those agents? Or does MC suffer from some of the same drawbacks as Min-Max

αβ where, as the state-space and game-tree complexities grow, the effectiveness of the

algorithm diminishes? On the heels of MC’s success in Go the latter question seemed

unlikely. However, games such as Hex and Chess remain elusive to MC methods. Is there

something more to these games other than their complexities that hurts MC based search?

The goal of analyzing the domains of two closely related games: Crossings and

Epaminondas, is to help shed light on this question. If these games prove difficult for

MC methods to play, what makes them special? Is there something more to these games?

2.2 Game Study

Why do researchers spend so much time studying games? One can claim that games

and human culture are intertwined. The oldest gaming pieces found date from 5,000 years

ago [34]. Every society and culture plays games. From Go in China and Shogi in Japan,

Chess worldwide, Senet and Seega in Egypt, Pachisi in India, Mancala in Africa, and one

of the oldest games called Ur found in Persia [8]. Games play a significant role in human

society and studying games can help researchers understand human cognition better. They

also present one of the few domains where machine knowledge can be directly tested, and

measured, against humans. Outside of being a part of human culture, games help model

and solve real world problems.

For example, game theory concepts derived from strategy games is applied to help

combat the increase of vehicular traffic in urban areas [25]. Researchers model normal

traffic patterns and how road closures and construction affect traffic as games. Solutions

to these games guide traffic policy and decisions [25]. In another example, medical

practitioners use game theory to develop an understanding of patient trust with respect

to medical care [45]. This is also an example of understanding human thought as the idea

6

of trust is scrutinized and digested to assist medical practitioners in putting their patients at

ease. The AI community also uses the game domain as a test bed for algorithmic research.

As complex games came under study, the algorithms used by AI researchers to solve

them became more complex. Algorithms such as MinMax [38], MinMax Alpha-Beta [29],

Upper Confidence Bounds applied to Trees (UCT) [31], etc., were tuned and modified to

handle playing games. These modifications led to breakthroughs in how humans played

games. Tesauro’s TD Gammon [46] agent brought a revolution in Backgammon as a once

eschewed opening proved to be very strong in tournament play . His program changed

how humans played Backgammon at a professional level. The development of MC based

search algorithms is a direct result of previous algorithms failing to gain any momentum in

playing Go.

Finally, games are fun, but often difficult to program. A key interest in MC algorithms

is the relative ease of implementation. A programmer can avoid coding in complex

strategies. Games such as Go suffer from this as long-term strategy for Go is very subtle and

difficult to grasp, let alone program into an agent [7]. Creating an agent to play competently

is difficult. Researchers often modify games to gain traction on the problem. At times,

reducing the board size can make an unsolvable game solvable. For example, Winands

shrank the game Lines of Action from 8x8 to 6x6 and proved it solvable on the smaller

board [53]. Researchers solved versions of Hex on boards up to 8x8 in a similar manner

[37].

2.3 Algorithm Development and Popular Games

One of the more popular, knowledge based, search algorithms is Min-Max with Alpha-

Beta (αβ) pruning [29]. As a knowledge based search algorithm, a heuristic function guides

an agent towards promising moves by pruning the search space. Usually, Min-Max αβ

is configured to search to a predefined cutoff depth, meaning it searches and returns the

node that appears to have the highest likelihood of success versus the best move. As the

7

state-space and game-tree complexities expand, the more likely it becomes that the move

returned is the not the best one. This is called the horizon effect and occurs because the

algorithm has to cutoff its search at a certain depth (d) due to time constraints [38]. Many

levels of the game can exist below this level. A move at level (d) may appear good when, in

reality, at level (d+1), it is a game loss. Researchers often modify Min-Max αβ to minimize

these issues. These enhancements cut down the amount of search space the algorithm sifts

through, enabling better move returns. Other variations have the agent select a move and

then do a small two to three turn look ahead from that move to counter the horizon effect.

However, there is still a limit. In addition, Min-Max αβ relies heavily on encoded heuristic

knowledge. If the heuristic function overestimates the strength of the player’s position,

then the agent can prune away winning lines of play or mistake losing plays for winning

ones. This is particularly true in the case of Go.

Go’s search space is the largest for a game of perfect information that researchers are

trying to tackle today [3]. Until the early 1990s, many felt that Go was unsolvable. In

1993, Brügmann applied the idea of simulated annealing to his Go playing agent Gobble

obtaining remarkable results [11]. Instead of giving the game all the knowledge of the

coder for Go, he let the agent play out as many lines of play as it could in a set timeframe.

Once time expired, the agent played the best line it found. The connection to multi-armed

bandit problem solving in this approach is evident [38]. Over the next decade, researchers

modified his approach and developed MC agents that played Go well on 9x9 boards [18].

The main strength of MC agents is they do not need any game knowledge to play a

game. This is a huge benefit to researchers. However, although MC agents are simpler

to code, researchers have yet to beat human players on 19x19 Go boards above an amateur

level [31]. Go research also outlines a common approach to game research; testing new

techniques and modifications on smaller boards and then extending them to larger ones. If

8

an algorithm proves successful, researchers apply it to a larger version of the game. This

holds true for games outside of Go.

Winands’ work with Lines of Action (LOA) began on the regular sized LOA board

for his Master’s and leveraged that research for his PhD [51, 52]. His agent, Maastricht in

Action (MIA), placed highly at the Computer Olympiad and progressed to one of the best

LOA playing agents in the world. He modified Allis’ PN search, the standard Min-Max αβ

search, as well as hybridizing a MC agent, creating his own algorithm called Monte-Carlo

Tree Solver [54, 55, 57–59]. He also shrank the board, and solved LOA on a 6x6 board

[53]. He used both LOA versions as a test beds for algorithmic development, analysis and

testing. Hex is another example of such work.

John Nash reinvented Hex while at Princeton in 1948 [37]. Although a simple

connection game, the state-space and game-tree complexity grow exponentially as the size

of the board increases. With its simple rules and expandability, Hex provided fertile ground

for algorithmic research. Researchers have solved smaller versions of Hex, but boards over

9x9 remain elusive [23, 37]. Hex is interesting on two counts: one, there is never a draw,

and two, it is weakly solved. This means there is a strategy that always wins. In the case

of Hex, the first player can theoretically never lose. The argument goes that if the second

player employs a winning strategy, then the first person can steal it and use it to win [37].

Research of this type continues today with researchers looking for other games to explore

and analyze.

2.4 Solving Games

Go is one of the most complex games researched today and researchers continuously

strive to develop agents that can play at a professional level with efforts using various

techniques such as Abstract Proof Search [12], Lambda-Search [47], and Monte-Carlo Tree

Search (MCTS) [17, 40]. The main goal for a game researcher is solving the game at hand.

Solving a game means finding the game-theoretic value of a given position [40]. This value

9

indicates who will win the game [24]. There are three categories for solving a game: ultra-

weakly solved, weakly solved, and strongly solved [3]. In ultra-weakly solved games, the

game theoretic value has been determined for the initial board state. For weakly solved

games, a strategy has been determined to obtain the game-theoretic value of the game for

both players. Finally, strongly solved games are those where an agent has a strategy or

game-theoretic value for all legal positions. With a new game, determining its solvability

is often a researchers first task.

Herik, et al. [24], developed four categories to help researchers determine the

solvability of a game. The game’s state-space and game-tree complexities play a vital role

in determining its category. Games with low state-space and low game-tree complexity

are easily solvable, usually through enumeration of all moves (brute-force) or a basic,

algorithmic strategy that always leads to a win or draw. Tic-Tac-Toe is an example of

such a simple game. Brute force methods can solve games with a low state-space but high

game-tree complexity. Nine-Men’s Morris and Checkers fall into this category of games.

The current upper bound for solving games via brute-force methods is approximately 1020.

Schaeffer derived this bound while solving Checkers although, in reality, he reduced the

state-space to 1014 through the elimination of illegal states and adding move prioritization

[43, 44]. Herik, et al., further solidified the 1020 bound in [24]. Knowledge-based methods

can solve games with a high state-space but low game-tree complexity. In these games,

researchers introduce game knowledge to reduce the search space allowing the agent to

find the best move available for the current position. Go-Moku [4] and Renju [49] are

examples of such games. Finally, unsolvable games possess both high state-space and

game-tree complexities where all known methods fail to solve them. The best examples of

these types of games are Hex, Chess and Go. For such games, researchers usually reduce

the board size to make them solvable as is the case of Hex 8x8, Go 5x5, and Lines of Action

6x6 [23, 50, 53]. In order to determine a game’s solvability, a researcher must derive a

10

game’s complexity. In order to do that, the researcher must build an agent to play it. This

task starts with selecting an appropriate search algorithm.

2.5 Min-Max

Researchers want to build agents that make optimum decision at every phase of the

game. The Min-Max algorithm returns the optimal decision from the current game state

[38]. It computes the min-max values for every reachable state in the tree and then returns

the move that leads to the optimal state. The algorithm works in a depth first recursive

manner where it moves down one branch to a leaf node, then recurses back up to go

down another branch and so forth. Eventually, the algorithm visits every reachable state.

Although it finds the optimal move, the time cost quickly becomes intractable for large

game trees since the complexity for the algorithm is O(bm) where m is the maximum depth

and b is the legal moves at each point [38]. The algorithm is easy to implement but finds

minimum use beyond trivial games such as Tic-Tac-Toe. Chess is a prime example of this

issue.

The game-tree complexity for Chess is approximately 10123 with an average game

length of 80 and a branching factor of 35. If a Min-Max agent computes one million moves

a second, it would take an astonishing 3.35 ∗ 10109 years to return the optimum move from

the initial board position. See Equation 3.1.

Min-Max Solving Chess Equation (2.1):

O(bm)

3.1514
=

3580

3.1514
= 3.35 ∗ 10109 (2.1)

This timeline only gets worse as the game complexity increases. With large game-tree

complexities, a researcher must use an alternative to min-max. In 1975, Knuth developed

the Min-Max Alpha-Beta (αβ) algorithm that prunes parts of the min-max tree that hold

values above or below a certain threshold [29]. In this manner, one can reduce the search

11

space, saving time and enabling an agent to return an answer in a reasonable amount of

time.

2.6 Min-Max with Alpha-Beta Pruning

The basic premise of Min-Max with Alpha-Beta (αβ) pruning is to assume that one

player, max, will always play the move that maximizes their position, while the second

player, min, will always choose the move that minimizes max’s position [21]. Beginning

at the root of the tree, max begins a search bounded by a depth d. At level zero, there is

a max node, then level d+1, a min node, at d+2, a max node, and so forth. Each level

switches the player’s perspective as each side takes future turns. Once a terminal node, or

the depth is reached, the algorithm evaluates the position from the perspective of whose

turn it is: max or min. It then backtracks one step, forwarding the value upwards. It then

proceeds down the next branch. If a value for a subtree is encountered that is higher for a

minimum node, or lower than a maximum node, the search stops looking at that subtree,

effectively cutting it off. This allows the algorithm to prune the space, reducing the time

needed to find a solution. Furthermore, setting a bound for the search also allows the agent

to quickly make decisions. Responsiveness is important in games. Humans are not overly

patient creatures, preferring an agent that can return a move in under a minute for games

such as Checkers and Lines of Action. Researchers usually extend these time limitations for

games such as Chess and Go where players often take minutes to make moves. Algorithms

1 and 2 present the pseudocode for the Negamax version of Min-Max αβ [27]. Figures 2.1

and 2.2 show how Min-Max αβ differs from the regular Min-Max algorithm as an agent

traverses the same search space.

12

Algorithm 1 min max()

1: if TerminalPosition then

2: return h value()

3: end if

4: moves = createChildren()

5: moves = orderMoves(moves)

6: best move = moves

7: for all children in moves do

8: makeMove(child)

9: oppMove = min max()

10: val = -oppMove.value

11: if val > best move.value then

12: best move = child

13: best move.value = val

14: end if

15: reverseMove(child)

16: end for

17: return best move

13

Algorithm 2 Negamax – alphaBetaMinMax(depth, alpha, beta)

if depth ≤ 0 or TerminalPosition then

return h value(move)

end if

moves = createChildren(move)

moves = orderMoves(moves)

best move = moves

for all children in moves do

if best move ≥ beta then

return best move

end if

makeMove(child)

if alpha < best move.value then

alpha = best move.value

end if

opponentMove = alphaBetaMinMax(depth-1, beta, alpha)

oppVal = -opponentMove.value

if oppVal > alpha then

alpha = oppVal

best move = child

end if

reverseMove(child)

end for

return best move

14

Figure 2.1: Min-Max

Figure 2.2: Min-Max with Alpha Beta Pruning

In Figure 2.1, the Min-Max algorithm will explore every single node, saving the best

max and min values at each node. The Min-Max agent will terminate only once it explores

15

the entire tree. In this manner, Min-Max returns the optimum move. However, as discussed

earlier, Min-Max may not terminate in a reasonable amount of time. Although complete,

Min-Max is not very useful beyond small board states.

A Min-Max αβ agent can reduce the search space significantly. In Figure 2.2, one

can see that parts of the tree are pruned when values go beyond the current αβ cutoffs.

These cutoffs can save tremendous amounts of computational time. In both figures, there

are unknown nodes underneath the I node. This subtree can be of an arbitrary size but Min-

Max αβ trims the I node. The algorithm can do this since, from earlier exploration, node C,

a min node, will not allow the agent to select nodes whose value is beyond three. Since it

has already hit this value, the algorithm can quit its search at this branch and recurse back

to the root node, A. Min-Max does not do this, and will explore all of these unknown nodes,

slowing the agent down. With pruning, Min-Max αβ can search a tree twice as deep in the

same timeframe as a typical Min-Max search [38]. Enabling deeper and quicker searches

allows agents to make better choices for their particular environments. However, because

of the horizon effect discussed earlier, bounded Min-Max αβ agents may not return the

optimum move. The algorithm returns a move that is estimated to be the best one. This is

the main trade off when using a bounded Min-Max αβ agent.

2.7 Alpha-Beta Enhancements

There are four major enhancements for Min-Max αβ search: move ordering, killer

moves, history heuristic, and transposition tables. Although Schaeffer [42] debates if all

these enhancements are effective, most AI researchers implement them in their Min-Max

αβ agents.

2.7.1 Move Ordering.

Min-Max αβ relies on good move ordering to be effective [35]. The main idea behind

move ordering is to have the algorithm look at good moves first. Schaeffer best defines

good moves as either ones that cause a cutoff or the one that yields the best min-max value

16

[42]. In this manner, cutoffs occur quickly and prune large areas of the tree. This has a two-

fold effect: one, it speeds up the search, and two, the agent is more likely to select winning

moves since it can continue to search valid parts of the tree without wasting computational

time on bad moves. If one avoids using this technique, then, in the worst case, Min-Max

αβ will search all the moves at each level before finding the best move. This worst case

scenario forces Min-Max αβ to run in O(b
3m
4) while, with proper move ordering, this can be

reduced to O(b
m
2) where b is the branching factor and m is the maximum depth of the tree

[38]. Move ordering significantly reduces state-space exploration allowing a Min-Max αβ

agent to look deeper into the tree, in less time, than regular Min-Max.

2.7.2 Killer Moves.

In the original Min-Max αβ method, once an agent returns a move, it scraps all state

evaluations. Every time the agent needs to make a move, it has to rediscover cut-off values

that, in all likelihood, are close to, if not the same, as the prior search since board positions

do not change dramatically from move to move. Instead of throwing out the old cut-off

values, the agent saves moves that caused cutoffs but were not the move selected for play.

When a new search begins, the agent retrieves these killer moves and, if valid, uses them in

the current position to expedite the search [42]. This heuristic saves a killer move for each

level of the search that produced a cut off [35]. Trying these moves first helps eliminate

parts of the tree, thereby, increasing the effectiveness of Min-Max αβ searches since the

agent is pruning the tree without having to calculate new cut-off values. Min-Max αβ’s

iterative search behavior enables the use of this technique.

2.7.3 History Heuristic.

The history heuristic is a general case of Killer Moves [42]. Instead of saving only a

handful of moves, the history heuristic saves the success rates for all moves at all depths.

After move generation, the agent orders moves based on their history scores, leading to αβ

cutoffs [35]. Over time, the history value is reduced since the game is progressing away

17

from those moves, i.e. their impact on the game state fades as moves are made. Again, this

enhancement reduces the space for the agent by cutting parts of the search tree.

2.7.4 Transposition Tables.

Transposition tables [42] reduce recalculation of states significantly. Instead of

throwing out evaluated states, the Min-Max αβ agent saves them in memory. Transposition

tables save information about the value of a subtree, the move that led to that tree and

its depth . When the agent encounters a state, it queries the transposition table first. If

the state is in the table, the query will return its value. Otherwise, the agent evaluates the

state normally and saves it to the transposition table along with its depth. Saving states

in memory saves computation time. Normally, researchers implement transposition tables

as hash tables. The advantage of hash tables is quick lookups. The average look-up time

for an element in a hash table is O(1) [16]. Insertion and deletion operations are also

O(1) operations. Hash tables have two limiting factors: the hashing function and memory

requirements.

A complicated hash function will slow down hash table operations. Zobrist Hashing

[62] is a simple and effective hash function. Zobrist hashing uses simple XOR-ing of the

board state, with other data such as its depth in the tree, to produce an index. In order to

retrieve the element, one just needs to XOR the current move and depth to produce the key

for look up. Zobrist hashing is a very simple, elegant, and most importantly, fast, way to

store and retrieve data from the hash table.

The second issue with hashing is memory space limitations. Since memory is finite,

one has to maintain a hash table size that is smaller than the number of reachable states.

Inevitably, since the key space is smaller than the state space, collisions will occur. There

are a number of ways to deal with hash collisions. One can keep the old value, dispensing

with the new, or keep the new and dispense with the old, or, chain the objects together,

basically forming a linked list off of the hash index [16]. In the case of a collision, the

18

implemented Min-Max αβ agent replaced the older hash table object with the latest one

under the assumption that the agent is unlikely to revisit the older state in the current game.

The Min-Max αβ algorithm is the most common search algorithm used for game

agents today. It can quickly create an agent to play a game and through heuristic refinement,

the agents can play up to a professional level in some games. However, Min-Max αβ never

played above a novice level in the game of Go on small boards leading researchers to look

elsewhere for answers.

2.8 Monte-Carlo Based Search Methods

Monte-Carlo (MC) based search methods have garnered interest ever since their

breakthrough in competently playing Go on small boards. The majority of Go programs

today use MC based search algorithms [10]. In their short article on MC methods, Lee et al.

[31] outline a quick history of MC based search algorithms and their impact on Go research.

Brown et al. provided an in-depth survey of MC methods in [10]. MC based search began

with Abramson’s idea of averaging the results of simulated random games from the current

board state [31]. In 1993, Brügmann applied the idea of simulated annealing in his Go

playing agent Gobble obtaining remarkable results [11]. Although Brügmann appeared

to make a breakthrough in Go, his work went relatively unnoticed for about a decade. In

2002, Bouzy et al. [7] successfully applied MC methods to 9x9 Go with their program Olga

and Oleg by editing the simulated annealing portion of Brügmann’s work to fit Abramson’s

original work. More pieces to the puzzle fell into place with Coulum’s Go agent Crazystone

[17]. Coulum added a stricter discriminatory selection of played out nodes. His algorithm

selectively chose the move to play out versus using a randomly selected move. This

improved Crazystone’s performance, allowing it to beat many of the Go agents at that

time [17]. Eventually, this algorithm matured with the introduction of Upper Confidence

Bounds Applied to Trees (UCT) to influence move selection [30]. Winands et al. pushed

MC based search further by adding Min-Max αβ selected play-outs to increase the agent’s

19

probability of selecting good moves [55–58]. These enhancements enabled the MC agent

to defeat Winands’ highly successful Maastricht in Action (MIA) Lines of Action (LOA)

agent. Currently, MC based Go agents play at a professional level for 9 x 9 boards and

amateur levels on 19 x 19 boards thanks to MC breakthroughs [31]. MC has also shown

success in games such as Hex, although Browne showed some board states remain elusive

[5, 9]. However, it appears to fail in its application to Chess [10, 36].

The basic MC based search algorithm consists of four parts: selection, expansion,

play out, and back propagation. Figure 2.3 shows one iteration of a basic MC based search

algorithm [10].

Figure 2.3: MC Based Search – One Iteration [10].

In the selection portion, the agent selects a node for expansion. An agent may select an

action randomly, the basic MC version, or it may select an action guided by a user-defined

policy such as UCT. After selection, the agent expands a node and adds the node’s children

to the search tree. Once added, the agent performs a play out to find a value for the selected

node. A play out may consist of a series of random moves, or guided in some manner

20

(see [56]). This defines the default policy for the selected algorithm. Once a play out is

complete, its value is backpropagated up the search tree and the process begins anew.

One of the major benefits to MC based search algorithms is they do not require a

heuristic function to evaluate the board state [10]. They only require the rules and logic to

determine a win, loss, or draw. In its simplest form, a MC based search agent generates

moves from a given state, randomly selects one, stores it in memory, and then plays a game

from that point. The agent selects random moves at each level until the game ends. The

agent evaluates the final board as a win (+1), loss (-1) or draw (0). This value is then

backpropogated up the tree to the original selected node. The agent then begins again by

selecting a move at random, which could be the same node or a different one, and continues

until time expires. Once time is up, the agent returns the child node with the highest win

percentage. The completely random MC based search agent usually performs poorly since

there are no guarantees that it will explore winning moves over losing ones. In addition,

the agent randomly selects moves in the play out step, versus selecting moves that may be

beneficial. To counter this, most researchers implement UCT.

2.8.1 Upper Confidence Bounds Applied to Trees.

In UCT, upper confidence bounds (UCB) guide the selection of a node, treating

selection as a multi-armed bandit problem [10]. Equation 2.3 shows the formula for UCT

node selection:

UCT Evaluation Equation (3.3):

Value = Xj +C ∗
√

ln (n)

nj
(2.2)

Xj is the win ratio of the current state, n is the number of times the parent state has

been visited, nj is the number of times the current state has been visited, and C is a constant

between 0 and 1 where higher values and lower values adjust the amount of exploration

done by the agent [10]. UCT theoretically converges to Min-Max if given infinite time

and memory and thus is optimal in that scenario. Browne showed the advantage of UCT

21

over the pure random MC based search agent in Hex. While the random MC agent failed

to solve relatively simple, tactical positions in Hex, UCT correctly solved them [9]. UCT

served as the baseline MC agent for Crossings and Epaminondas.

2.9 Monte Carlo Enhancements

The main divergences in MC based search implementations reside in the selection

and play out stages. Winands proposes that constructing a smaller, heuristic guided search

tree with Min-Max αβ produces better results in Lines of Action [56]. There is a price

to tweaking selection and play outs. Any modification to the selection or play out stages

reduces the number of nodes selected for play out. Furthermore, it reduces the number of

times the algorithm runs in the specified time. Both of these factors impact the effectiveness

of the MC based agent. In essence, Winands’ method gambles that the Min-Max αβ based

play out derives correct values for all nodes. In this case, all nodes selected for expansion

will contain values close to those a Min-Max αβ agent could produce. The main issue with

this technique is the Min-Max αβ portion of the agent must be highly tuned to achieve

such results. If the agent incorrectly estimates the node value, then the agent will not only

explore a minor portion of the tree space, it will explore a bad part of the tree, resulting in

poor play. A popular alternative to UCT is Rapid Action Value Estimation (RAVE).

2.9.1 Rapid Action Value Estimation.

RAVE differs from UCT in two ways. First, RAVE adds another value estimate to the

Upper Confidence Bound (UCB) in UCT, shown in equation 3.2:

RAVE State EvaluationEquation (2.3):

S tateValue = Xj ∗ β + (1 − β) ∗
√

ln (n)

nj
(2.3)

where β equals
√

k
(3∗numGames+k)

. The β parameter tempers the impact of UCB as well

as the win rate estimate. The more the agent plays out a move, the more weight the

moves win rate holds. Researchers derive k through testing. Secondly, RAVE updates

22

any moves encountered during random play out that currently exist in the search tree,

with the value found at the end of the game. This is the equivalent of playing out those

nodes simultaneously. Cazenave [13] and Browne [9] provide a thorough treatment of

RAVE. RAVE enabled MC based agents to play Go at a professional level on 9x9 boards

and an amateur level on 19x19 boards [31]. RAVE still proves inadequate for Chess and

adds complications to the backpropagation step since encountered nodes during play out

must be cross-referenced with any nodes expanded in the search tree. Furthermore, RAVE

ignores heuristic guidance although Winands shows that heuristic knowledge can impact

the success of MC based search agents [56]. However, Winands’ method is complicated to

implement and requires a highly tuned heuristic evaluation function to work properly.

2.9.2 Heuristic Guided UCT.

The idea behind the Heuristic Guided UCT (HUCT) approach is to leverage strong

game evaluators built for Min-Max αβ to overcome the difficulties MC agents have in

tactical domains. Lorentz and Horey [33] use a heuristic evaluation function of the board

state to backpropagate a win or loss in limited MC roll outs in their Breakthrough agent.

After this modification, their agent outplayed the majority of Min-Max αβ agents on a

popular game server. In earlier work, Winands’ heuristic guided UCT achieved balanced

play against his LOA playing agent Maastricht in Action (MIA) [57, 58]. Researchers

achieved similar results in Amazons [28, 33] and Go [19].

The drawback to the heuristic guided approach is the agent must perform the move

in order to evaluate it. This means added computation time, resulting in fewer simulations

per time interval. As noted, fewer simulations can result in poor play. Furthermore, the

heuristic value weighs heavily in node evaluation. If the heuristic is poor, the algorithm

may suffer. However, research indicates that HUCT usually outperforms the basic UCT

algorithm and can play on par with some Min-Max αβ agents. Chapter 5 provides a

23

comparison of UCT and HUCT implementations playing against Min-Max αβ agents in

Crossings and Epaminondas.

2.9.3 Threading.

Researchers have shown that threading MC based search agents can be a relatively

easy task and can increase the performance of the agent. Yoshimoto et al. proved there is

a point of diminishing returns for threaded MC based search agents [60]. There are three

types of threading possible: root, leaf, and tree [14]. The simplest is root threading. Here

the agent launches separate MC based threads with the same root node. Once time is up,

the parent thread returns the best move from the thread returns. The benefits of this method

is it is the simplest to implement and there are no shared memory issues.

A secondary method is leaf parallelization. Here, after the agent selects a leaf node

to play out, it spawns multiple threads from that move (each represents a simulated game

play out from that node). If one is optimistic, the agent assigns the highest value returned

to the move. Since MC agents often underestimate the value of a position, this is prudent

[56]. However, one can err on the side of caution and assign the lowest value returned as

well.

Finally, Chaslot et al. [14] introduced the tree parallelization method. In their

algorithm, all threads have access to the search tree. The threads run simultaneous games

at once, sharing information as they play out. Here one must maintain global and local

mutexes to avoid corruption of the search tree. As threads complete their simulations, the

agent backs up the values to the shared tree. The major downside to this type of threading

is the introduction of mutexes that are notoriously hard to implement correctly and

troubleshoot. Additionally, Chaslot et al failed to prove any true benefit from implementing

this type of threaded MC based search agent. Additionally, the implementation seems very

similar to the RAVE technique with more coding overhead involved.

24

2.10 Rules and Strategies for Crossings and Epaminondas

Literature on Crossings and Epaminondas is sparse with the main sources coming

from the rules published in Sackson’s book, A Gamut of Games, as well as Abbott’s

expansion of the game into Epaminondas discussed in an article for Abstract Games, as

well as his own article about the games [1, 22, 39]. Crossings and Epaminondas are zero-

sum, two-person strategy games with perfect information. Abbott invented Crossings in

the late 1960’s [39]. A few years later, Abbot increased the complexity of Crossings by

expanding the board to 12 x 14 and modified the capturing rules to place more emphasis on

flanking maneuvers [1]. He dubbed his new creation Epaminondas [22]. The basic premise

of both games is to move one’s pieces to the opponent’s back row. Once a piece lands on

an opponent’s back row, a move called a “crossing,” the attacked player has one turn to

respond. Here the two games diverge. In Crossings, the only response for the attacked

player is to complete their own crossing. In Epaminondas, the attacked player can either

complete a crossing or capture the offending piece. If these conditions are met, the game

continues. Otherwise, the game is over, and the player who made the last crossing wins.

This creates a unique gaming experience steeped in forward-thinking strategy.

2.11 Crossings

The following sections outline the rules and strategies for Crossings [39].

2.11.1 Overview.

Crossings is played on a 8 x 8 checkered board with 16 white and 16 black pieces. The

initial starting position is displayed in Figure 2.4. White moves first, followed by black and

so on. A player cannot pass. The goal is to move a piece onto an opponent’s back row.

Whoever has more pieces on their opponent’s back row after one full turn, is the winner.

25

Figure 2.4: Crossings Initial Position.

2.11.2 Phalanxes and Movement.

One or more pieces can move at a time. Only pieces adjacent in a straight line can

move together. Singleton pieces can move in all directions. Phalanxes can only move along

the line in which they are orientated. The maximum number of squares a phalanx can move

is equal to the number of members of the phalanx. For example, a phalanx of two can move

one or two squares. A phalanx of one can only move one square. Subphalanxes of a larger

phalanx may move independently. In other words, one chooses how many members of a

phalanx will move and how far the phalanx will travel up to the max allowable distance.

See Figure 2.5.

Figure 2.5: Example Phalanx Moves.

26

2.11.3 Capturing.

When a phalanx of two or more runs into an enemy phalanx that is strictly smaller than

it, the first encountered piece may be captured. The attacker captures only the lead piece

and the phalanx stops on that square. See Figure 2.6. If a phalanx encounters an enemy

phalanx of equal size, then movement halts in front of the enemy phalanx. In Figure 2.6 if

White had a piece at I2, then Black’s phalanx would have been unable to capture White’s

piece at F2.

Figure 2.6: Crossings Capture Example.

2.11.4 Objective.

Once a player moves a piece to the opposing back row, a crossing has occurred. Unless

an opponent responds immediately with their own crossing the game is over. If an opponent

makes a crossing, then play will continue. Crossed pieces can no longer move and a player

cannot capture them. The game continues until one player has more crossed pieces than

the other. Games can end in a draw. Draws occur when both players complete crossings

and have an equal amount of pieces on each home row with no further moves available.

In Figure 2.7 it is Black’s move. Black can cross with [A7,A6] - [A8], then White will

27

respond with a second crossing [H2-G1]. Black then responds [A7-B8] and the game is a

draw since neither player has any legal moves left.

There are instances where no legal moves left for a player is not indicative of a draw.

A player may lose all of their pieces, or have a crossed piece and then lose the rest of their

pieces during game play. Both instances result in a situation where one player may have no

legal moves left. When a player loses all their pieces, they lose the game. If a player has no

legal moves left, and the opposing player can eventually make an additional crossing, then

the opposing player wins. In Figure 2.8 it is White’s move. After capturing Black’s piece

on A7, Black will have no legal moves left and White is the winner.

Figure 2.7: Black to Move – Game is a draw.

2.11.5 Basic Strategies.

2.11.5.1 Softening.

If a large phalanx is about to capture another, often times it is best to move the leading

piece towards the threatening phalanx. The opponent must first capture the singleton piece

before trying to capture the original phalanx. This can lead the attacker into situations

28

Figure 2.8: White to Move – After capturing A7, White wins.

where the defender can bring other phalanxes into play and recapture the attacking phalanx

or use the cutting strategy.

2.11.5.2 Cutting.

The size of a phalanx dictates its mobility and capturing power. One way to mitigate

both is to split the opponents phalanx in some manner. Cutting a phalanx reduces its

offensive and defensive capabilities and is useful in slowing down an opponent’s ability

to launch deep attacks into one’s territory.

2.11.5.3 Channels.

Carving channels into enemy positions is a valuable strategy, especially in row 2 for

White and row 7 for Black. This allows for crossings where the enemy either cannot cut

the long phalanx, thus allowing further immediate crossings, or opens up long channels of

free movement for other phalanxes to exploit.

2.11.5.4 Close Gaps.

Connected pieces are stronger than singleton pieces. As phalanxes move from their

original positions, they often leave holes in the home rows. Closing these gaps avoids

channels and builds larger defensive phalanxes that are vitally important for thwarting

29

enemy crossings. This is a defensive maneuver for both players. Since one cannot capture

an enemy piece that has crossed, it is best to empty the back row, focusing on defending

rows 2 and 7 respectively. However, in certain situations, see Blocking, having pieces on

the home row can be advantageous.

2.11.5.5 Blocking.

As the game progresses, more enemy pieces come closer to making crossings. In these

situations, a player may move their pieces into gaps on the back row to prevent singleton

phalanxes from crossing over. This maneuver is quite effective when used in conjunction

with sweeping.

2.11.5.6 Sweeping.

In this strategy, a player builds a mobile horizontal phalanx of 3 to 4 pieces on row 2

or 7 (depending on the player’s perspective). This sweeper is used to capture any pieces

landing on those rows, thus preventing crossings from occurring. A sweeper unit can also

use the tactic of softening by throwing itself into the way of an incoming enemy phalanx

to prevent immediate crossings.

2.12 Epaminondas

The following sections outline the rules and basic strategies for Epaminondas [22].

2.12.1 Overview.

Epaminondas is played on a 14 x 12 checkered board with 28 black and 28 white

pieces. The original board is set up in the starting position seen in Figure 2.9. White plays

first, followed by black, and so forth. Players cannot pass. Both players’ goal is to move

pieces, called phalanxes, to their opponent’s back row. Whoever has more pieces on their

opponent’s back row after one full turn, wins the game.

30

Figure 2.9: Epaminondas Starting Position.

Figure 2.10: Example Phalanx Moves in Gray.

2.12.2 Phalanxes and Movement.

A phalanx is a connected group of one or more pieces. Theses pieces must be

horizontally, vertically or diagonally inline with one another. According to Abbott, these

phalanxes are representative of Ancient Greek battle formations where hoplites lined up

side by side, and front to back in squares, to face off against enemy armies [2]. Phalanxes

of size one, can move in any direction. They cannot move onto occupied squares. Groups

of two or more phalanxes can only move in straight, orthogonal or diagonal lines (forward

and backward) depending on the orientation of the phalanx. Pieces can belong to multiple

phalanxes at once. The number of spaces a phalanx can move is less than or equal to the

31

number of pieces in the phalanx. A one piece phalanx can move one space, a two piece

phalanx can move one or two spaces, a three piece phalanx can move one, two, or three

spaces and so on. Phalanxes can split for moves as well. For example, a player can split a

larger phalanx into a smaller one and move the appropriate spaces accordingly. Phalanxes

cannot move through friendly or opposing pieces. Only in the case of a legal capture can a

phalanx move into an occupied square. Figure 2.10 provides an example of the number of

moves available to a player in one small area. The list of possible moves is as follows:

• Phalanxes of Size One:

– D2-C1, D2-C2, D2-C3, D2-D1, D2-D3, D2-E1, D2-E3, E2-D1, E2-E1, E2-F1,

E2-D3, E2-E3,E2-F3, F2-E1, F2-E3, F2-F1, F2-F3, F2-G1, F2-G2, F2-G3

• Phalanxes of Size Two:

– [D2,E2]-C2, [D2-E2]-B2, [F2,E2]-G2, [F2,E2]-H2

• Phalanxes of Size Three:

– [D2,E2,F2]-C2, [D2,E2,F2]-B2, [D2,E2,F2]-A2, [F2,E2,D2]-G2, [F2,E2,D2]-

H2, [F2,E2,D2]-I2

This simple position contains 30 possible moves, demonstrating the complexity of

Epaminondas positions.

2.12.3 Capture.

In order to move onto an enemy occupied square, the number of pieces in the attacking

phalanx must outnumber the number of pieces in the defending phalanx. If the attacking

phalanx is of equal size or smaller, then movement stops at the square in front of the

occupied enemy square.

32

If a capture occurs, the lead piece of the attacking phalanx occupies the square where

the lead piece of the defending phalanx resided. A player loses their entire defending

phalanx when a capture occurs. Figure 2.11 shows an example of a legal capture.

Figure 2.11: After Capture: [E2,D2,C2,B2] x [F2,G2,H2].

If a White piece resided on I2, then White would have avoided capture.

2.12.4 Objective.

The objective of the game is to move one’s pieces across the board to the opponent’s

back rank. If, at the start of White’s turn, White has more pieces on Black’s back row than

Black has on White’s back row, White wins. The same applies at the start of Black’s turn.

The following descriptions of Figure 2.12 and Figure 2.13 clarify winning and continuing

game conditions.

In Figure 2.12, White moves onto Black’s back row [H2,H3,H4]-[H1]. Black has two

options, immediately capture the piece, or move a piece onto White’s back row. In this

situation, Black can do neither. Black will make a move, and then, because it is White’s

turn, and White has more pieces on Black’s back row than Black has on White’s back row,

White wins the game.

33

Figure 2.12: White crosses. [H2,H3,H4] - [H1].

In Figure 2.13, Black can respond by capturing White’s piece [L1,M1,N1]x[I1]. Black

can also move onto White’s back row [L10,K9,J8]-[N12]. Either move results in an equal

number of pieces on each opposing back row; zero in the former, one apiece for the latter.

After Black moves, the game would continue.

Figure 2.13: Black to Answer.

Pieces moved onto a back row are available for future moves but, often times, once

they are on an opponent’s back row they stay until captured or the game ends. One

34

additional win condition, not covered in the article by Handscomb, is exhaustion of pieces.

Exhaustion of opposing pieces is a de facto win condition for a player. Finally, to help

alleviate draws, Abbott added a rule of symmetry [22]. A player cannot move their piece

onto the row furthest from them if it creates a pattern of left-to-right symmetry.

2.12.5 Puzzles.

The following puzzles were first published in the Handscom article on Epaminondas

[22]. Abbott personally authored these puzzles and they serve as the only known test cases

for Epaminondas. These puzzles exemplify the complexity of the game. The implemented

Epaminondas agent solved these four puzzles with the Min-Max algorithm. The solutions

follow the puzzle descriptions.

Figure 2.14: Puzzle 1: White to win in three.

Figure 2.14: It is White’s turn and can win in three full turns (White move + Black

move = 1 full turn). The main threat is dropping the three-piece phalanx onto Blacks back

row, however, doing this move first allows Black to recapture easily. Solution: White: [H3,

35

Figure 2.15: Puzzle 2: White to win in two.

Figure 2.16: Puzzle 3: White to win in four.

H4, H5]-H2. Black: [I1, J1, K1]-J1. White: H2-G1. Black: [I1, J1, K1] x G1. White: [H3,

H4] x H1. Black: N/A. White wins since Black cannot recapture.

Figure 2.15: Again, White threatens another crossing onto Black’s back row and again,

Black has enough defenders to prevent this. White must force Black to move its two-piece

phalanx on Row 1 in order to win. White wins in two full turns. Solution: White: [L12]-

36

M12. This forces Black to move its two-piece phalanx. All possible positions are a loss. For

example, [C1, D1]-E1, White responds with B2-A1 and Black is too far away to capture.

Moving towards A1 results in a White capture and win.

Figure 2.16: In this example, White has fewer pieces than Black, however, White is

threatening to make a crossing. The correct move for White is subtle but forces a win.

White wins in four turns. Solution: White: J4-I3. Black: N2-N1. White: L2-K2. Black:

[N1, M1, L1]-I1. White: K2-L1. Black: [N1, M1, L1] x L1. White: [I3, J4] x L1. Black:

N/A. White wins since Black cannot respond by capturing White’s piece or by making a

crossing.

2.12.6 Basic Strategies.

2.12.6.1 Softening.

If a large phalanx is about to capture another, often times it is best to move the leading

piece towards the threatening phalanx. The opponent must first capture the singleton piece

before trying to capture the original phalanx. This can lead the attacker into situations

where the defender can bring other phalanxes into play and recapture the attacking phalanx

or use the cutting strategy.

2.12.6.2 Cutting.

Often times it is best to cut opposing phalanxes in two. This reduces their mobility

and attack capability. Instead of a 5-piece phalanx, one can reduce it to two, two-piece

phalanxes that are more vulnerable.

2.12.6.3 Channels.

Carving channels into enemy positions is a valuable strategy, especially in an

opponent’s back row. This allows for crossings where the enemy either cannot recapture

completely (defending phalanxes are now smaller) or cannot recapture at all (reduced to

one piece phalanxes).

37

2.12.6.4 Close Gaps.

Connected pieces are stronger than singleton pieces. As phalanxes move from their

original positions, they often leave holes in the home rows. Closing these gaps avoids

channels and builds larger back row phalanxes that are vitally important for thwarting

enemy crossings.

2.12.6.5 Sweepers.

As with Crossings, sweeper phalanxes are effective at limiting an opponent from

making crossings. Unlike Crossings, however, it is best to place long sweepers on the

home row since crossed pieces can be captured. Often times, these sweepers can turn the

tide of the game as crossed pieces are removed, thus increasing the likelihood that one ends

up with more crossed pieces on the enemy home row.

2.12.6.6 Piece Domination.

In many capture games having more pieces than an opponent is an indicator of a

favorable board position. For Epaminondas, the more pieces a player has the more likely

they can traverse the board and make a crossing. In addition, piece dominance is indicative

of offensive and defensive potential.

2.13 Summary

This chapter reviewed the current literature on gaming research in AI. It proposed

that game research is important because it brings solutions to real world problems such as

combating urban traffic and defining trust in medical care as well as testing algorithmic

limits. Additionally, it outlined the major algorithms in use today and domains where

they currently fail. This chapter established the idea that heuristic values may increase

the UCT algorithm’s game playing ability and that adding heuristic information in UCT

is rather straightforward, avoiding the complexity associated with RAVE and Winands’

αβ play outs. Finally, this chapter introduced the rules and strategies for Crossings and

Epaminondas.

38

III. Methodology

This chapter describes the approach used to answer the research questions presented

in Chapter 1. First, it restates the research goals. Section 3.2 follows with an overview

of Min-Max αβ agent development and defines the six major heuristics used to evaluate

the board state. Next, Section 3.3 describes the common approach used to derive the state-

space and game-tree complexities of games. Section 3.4 defines the two Monte-Carlo (MC)

based algorithms, Upper Confidence Bounds applied to Trees (UCT) and Heuristic Guided

UCT (HUCT), used in the experiments. Section 3.5 describes the testing environment.

Finally, Section 3.6 details the performance metrics used to evaluate the implemented MC

algorithms.

3.1 Research Goals

The goals of this research are multifold. One, construct game playing agents for

Crossings and Epaminondas to establish game-tree complexity estimations for each game

and determine their solvability. These agents then become the primary opponent for

the Monte-Carlo (MC) based search agents. Second, modify UCT to include limited

heuristic knowledge, then assess the performance of UCT and its modification, HUCT, in

a game of low complexity (Crossings) and in one of high complexity (Epaminondas). The

performance of these algorithms is compared to reach conclusions about the effectiveness

of each algorithm in both environments when compared to an αβ agent, as well as each

other. Finally, analyzing their performance can determine if either domain is dominated by

Min-Max with Alpha-Beta (αβ) pruning.

3.2 Agent Development

Since no known agents for Crossings and Epaminondas exist, the first step towards

developing the game-tree complexity was building agents to play the games. The Min-Max

39

αβ algorithm was selected to represent the baseline agent for all experiments. Building the

Min-Max αβ agent consisted of encoding heuristics from similar games such as Lines of

Action, Chess and Go. Human game play experience also guided heuristic generation.

Heuristic development stopped when a Min-Max αβ agent, set to a search depth of 3,

returned a move within 15 seconds and played at a novice level. Being able to defeat a

human opponent playing at a beginner level defines a novice level of play.

The method for developing a novice level of play consisted of implementing a basic

Min-Max αβ agent and then adding, testing, and refining heuristic functions, qualitatively

measuring their effects on game play. The first versions of the Crossings and Epaminondas

agents utilized basic alpha-beta search defined by Knuth [29]. Knuth’s Min-Max αβ

algorithm was used for multiple reasons. One, it is well documented and researched. Two,

it is easy to implement. Finally, any basic evaluation function immediately begins pruning

the search space. This pruning allows the agent to search more nodes in less time, enabling

better play. For the game-tree complexity experiments, Min-Max αβ versus Min-Max αβ

appeared more likely to produce a better estimation of the game tree space over random

only players. Additional refinements improved the performance of the agent.

The first major improvement was the incorporation of transposition tables. The agent

uses a Zobrist hash to save a visited board state into an array [62]. Before the agent

evaluates a board state, it consults the transposition table. If a “hit” occurs, then the agent

receives the value of the board state, making reevaluation unnecessary. Most games, when

transposed to graphs, contain cycles. During a regular Min-Max αβ search this means

an agent may reevaluate the same board state multiple times, thus slowing its search

and affecting its responsiveness. The more nodes the agent can search in the allotted

timeframe, the better it will play. Transposition tables resulted in considerable speed up

for Epaminondas. In early testing, they enabled the agent to almost double the amount of

nodes processed per second.

40

Next, leveraging heuristics from Lines of Action and the ancient Egyptian game

Seega, the evaluation function was modified to take into account bad zones as well as

piece counts. The outermost columns of Crossings (Columns A and H) and Epaminondas

(Columns A and N) appear relatively weak for phalanx formations since phalanxes along

these columns are highly vulnerable to horizontal and diagonal attacks. In addition, early

versions of Epaminondas agents often left singleton phalanxes stranded on these columns

versus bringing them into larger phalanxes. Adding the bad zone heuristic resolved this

problem. For Seega, researchers used piece counts (number of ones pieces subtracted from

the number of opposing pieces) to help guide their agents [6]. This heuristic also assisted

the agents performance.

Seven heuristics for the game Lines of Action include threats, solid formations,

mobility, blocking, centralization, material advantage, position values, and initiative [52].

As game knowledge of Crossings and Epaminondas grew through human experience and

agent self-play, six further strategies evolved: softening, cutting, channels, close gaps,

blocking, and sweeping. The following sub-sections describe the major heuristic functions

used by the Min-Max αβ agent to encode these strategies.

3.2.1 Mobility.

In both games, mobility is a key to victory. The agent uses two functions to calculate

the mobility score. First, it sums the total number of squares that all the phalanxes can

traverse and then divides that by the number of moves available. For example, if a player

has only one piece left on the board and it can move freely in all eight directions, the state

is scored as 1
8
= .125. The second function merely tracks the largest distance that can be

covered by any of the player’s phalanxes. In the previous example, the value is 1. The

mobility score for this player is 1.125.

41

3.2.2 Material Dominance.

In many games, possessing more pieces is indicative of a winning position. This

function returns the difference of the sums of opposing pieces. A negative value indicates

material advantage for the opponent while a positive value indicates otherwise. A value of

zero means neither player is ahead as far as material is concerned.

3.2.3 Crossing.

The object of the game is to cross to an opponent’s back row. This heuristic captures

the idea of a crossing by summing the number of pieces on the opponent’s back row in the

current board state. One point is assigned for each piece. If a player has two pieces on the

opponent’s back row then the position is assigned two points, three pieces equals three and

so on.

3.2.4 Center of Mass.

In many board games such as Lines of Action and Chess, the center squares play an

enabling role for winning. This is well explored in Chess with many openings concentrating

on either controlling, or contesting, the middle of the board. This function calculates the

Euclidean distance for all pieces from the center of the board for each side. The agent

subtracts these scores. A positive value indicates a higher center of mass for a player.

3.2.5 Home Row Defense.

As crossings are important to winning, preventing one’s opponent from making

crossings is vital. One defensive maneuver in both games is to build a large phalanx

on the back row (Epaminondas) or the next to last row (Crossings); refer to Sweeping

in Chapter 2. The agent uses these phalanxes to capture crossed pieces in Epaminondas

or prevent crossings in Crossings by moving in the path of threatening phalanxes. The

function created to encode this idea calculates the largest contiguous phalanx on the home

row in Epaminondas or next to home row in Crossings. For example, if a player has four

pieces connected on their home row, then this function returns a value of four.

42

3.2.6 Territory.

Owning territory is important in board games such as Chess and Go, with the former

being its winning condition. The idea of territory in Crossings and Epaminondas is a little

more abstract since territory can be contested, pieces blocking one another or instances

where one can capture the other. In a manner similar to Go, this function looks at each

piece individually and looks at each surrounding space around it (all eight directions). If a

space is empty, then the value of that particular square is given +1. If the space is occupied

by a friendly piece, the square is given a +1. Otherwise, the square is given +0. One can

see that if a piece is in the middle of the board, with no enemy pieces around it, its territory

score will be an 8. The total territory score is the summation of all the squares surrounding

the player’s pieces not occupied by enemy pieces. The opposing territory score is also

calculated and then subtracted from the original player’s score. A positive value indicates

a strong territory score. In the future, this function should take into account contested

squares, i.e. squares that are contested by both sides, as well as weighing certain board

squares more heavily than others.

3.3 State-Space and Game-Tree Complexity Analysis

The state-space complexity of a game is defined as the number of legal positions

reachable from the initial board position [3]. One method for estimating the state-space

for a game is proposed by Allis in his work Searching for Solutions [3]. Allis calculates the

values possible for each space on the board. By assigning each space one of three possible

values: white, black, or null, a loose estimate of the state-space for Crossings is on the

order of 1030, while Epaminondas is close to 1080. Winands uses a stricter mathematical

approach to tighten the estimate for the state-space of a game in his thesis on Lines of

Action [52]. Winands bases his formula on Schaeffer and Lake’s work on Checkers [51].

43

Winands’ State-Space Complexity Equation (3.1):

maxBPieces∑
B=1

maxWPieces∑
W=1

(
numS quares

B

)(
numS quares − B

W

)
(3.1)

where B equals the number of black pieces and W equals the number of white pieces

[51]. Winands further refines his state-space estimates by eliminating positions that, while

theoretically possible, are unachievable through play [51]. These are called spurious states

[61]. The only states removed for Crossings and Epaminondas were those where each side

possessed one piece left on the board. These positions are impossible to reach through legal

game play. However, unlike Lines of Action, both Crossings and Epaminondas can have

positions where a side has two pieces left, while the other has zero. This situation is an

automatic win for that player and is the result of legal moves (captures).

Although deriving the state-space is rather straightforward, game-tree complexity

analysis is a little more complicated. The game-tree complexity of a game is defined as

“the number of leaf nodes in the solution tree of the initial position of the game,” where

the solution tree for a move is of full width and is of sufficient depth to determine the

game-theoretic value of that move [3]. One can view the game-tree complexity of a game

as an estimate of the game’s decision complexity. If the game is small enough, one can

enumerate all possible moves from all possible positions. However, in all but trivial games

such as Tic-Tac-Toe, this is infeasible. One must build an agent to play multiple games to

find the average length of a game as well as the average branching factor per move. In other

words, how many turns does a normal game contain, and how many moves are available to

a player per turn.

For each game, one thousand self-play games established the baseline to determine

the game-tree complexity. From these self-play games, average game lengths and the

average branching factors were determined. Equation 3.2 presents the formula for deriving

an estimate of the game-tree complexity.

44

Estimate of Game-Tree Complexity Equation (3.2):

BranchingFactor(GameLength) (3.2)

This estimate relies heavily on the correctness of the heuristic value embedded in the

Min-Max αβ agent. A poor heuristic may result in an over or under estimation of the game

length and branching factor. The agent used Min-Max αβ search with all four Min-Max

αβ enhancements: move ordering, killer moves, history heuristic, and transposition tables

during play. To enable fair play, and produce tighter results, the agent randomized the first

three moves for each player. This is similar to Winands’ [52] and Schadd’s [35] initial

research efforts where they biased the Min-Max αβ algorithm to produce “real” game play

for their respective games . The results of the thousand self play matches give a good

estimation of the game-tree spaces for Crossings and Epaminondas.

3.4 Monte Carlo Methods

Monte-Carlo (MC) methods are the focus of many researchers today, especially for

the game of Go (refer to Chapter 2, section 2.8 for further details on MC search algorithm

evolution). MC based algorithms are notoriously noisy where results in play can vary

widely from one game to the next. This is due to the stochastic nature of MC methods. Both

UCT and HUCT played against a tuned Min-Max αβ agent set to a depth of 3. The random

factor associated with Min-Max αβ self-play was removed. Each MC based algorithm

played 5,000 games as White and 5,000 games as Black to identify advantages for either

color, if they existed at all. Finally, decision times were set to 1, 5, 10, and 30 seconds. The

agent simulated 10,000 games per time interval during testing, lending support to the data

observed.

To further mitigate interference with the MC agent, each game was launched as a

separate thread and only five threads were run at a time to avoid overloading machine

processors. This ensured each thread received approximately the same amount of

45

processing time in the allotted time interval. Since MC methods were limited to a time

window, placing too much strain on the processors would result in fewer simulations per

second negatively impacting the MC agents performance. Keeping the core utilization

threshold to 80 percent produced equivalent results in preliminary testing across all three

machines.

The UCT algorithm provided the baseline MC agent for MC assessment. UCT node

selection was guided by:

UCT State EvaluationEquation (3.3):

Value = Xj +C ∗
√

ln (n)

nj
(3.3)

The C constant value varies with each domain. After initial testing, 0.445 provided a

balance between exploration and exploitation using UCT. The algorithm performed the

common random play out for each simulated game, backpropagating 1 for a win, -1 for a

loss, and 0 for a draw once complete. The modified UCT algorithm included the heuristic

value of the node in the following manner:

Heuristic Guided UCT Node EvaluationEquation (3.4):

Value = Xj + HValue(S tate) +C ∗
√

ln (n)

nj
(3.4)

After preliminary testing, C was set to 0.667 allowing for fuller exploration of each level.

The HValue(State) term represents the call to the heuristic function used by the Min-Max

αβ agent. This call costs computational time as the agent has to make the move, evaluate

it, and then revert the game state. The goal was to guide the agent towards more promising

parts of the tree through the heuristic value to overcome the loss of simulations performed.

It followed the same play out and backpropagation scheme of the normal UCT agent.

The agent only calculated the heuristic value of a node at the expansion step avoiding

recalculations if the agent selected the node for play out later in its time interval.

46

3.5 Environment

Both Crossings and Epaminondas provide the environment for all the experiments run

during testing. Crossings establishes a baseline from which comparisons can be drawn.

The similarities between the games allows for algorithmic comparison as they cross from

a lower complexity to a higher one. Data collected also grants insight into the games

themselves. For example, Min-Max αβ agents show that White appears to hold a slight

advantage in Crossings and in Epaminondas.

All heuristic refinement, and complexity experiments were ran on a 2.9 GHz Intel

Core i7, 8 GB 1600 MHz DDR3, Mac Book Pro running Mac OS X Lion 10.7.5 using

Eclipse Version: Juno Service Release 1 Build id: 20120920-0800. Monte-Carlo agent

experiments were run on three 3.1 GHz Intel Xeon Dells, running Windows 7 Enterprise

Edition 6.1 using Eclipse Version: Juno Service Release 1. The native operating systems

scheduled game simulations without interference or modification by the programs running

the agents.

3.6 Performance Metrics

An algorithm’s win ratio is the primary measure of success. Game length and

simulations achieved per turn were compared to win ratios to gain additional information

about the effectiveness of the MC search algorithm in question as well as the agent’s

behavior in the underlying testing environment.

MC Based Algorithm EvaluationEquation (3.5):

WinRate =
numWins

numGames
(3.5)

3.7 Summary

This chapter introduced the approach taken to answer each research question. It laid

the groundwork for the experiments and data results chapters that follow. The chapter

identified how basic agents for each game were constructed. Furthermore, it defined the

47

heuristics used to refine their searches. Additionally, this chapter presented MC agent

testing and the performance metrics used to assess an their performance.

48

IV. Experiments and Model Design

This chapter outlines the three experiments implemented to answer the research

questions. Section 4.1 details the construction of the novice game-playing agent and defines

an additional eight heuristics used by the Min-Max αβ agent to evaluate the board state.

Furthermore, it outlines the parameters for establishing novice play. Section 4.2 outlines

how the agent derived the average game lengths and branching factors to calculate the

game-tree complexity for Crossings and Epaminondas. Finally, Section 4.3 describes the

testing of the MC based agents.

4.1 Experiment One: Agent Development

The first experiment consisted of a series of human versus agent games designed

to create a novice level Min-Max with Alpha-Beta (αβ) pruning agent for each domain.

After encoding the rules outlined in Chapter 2 into a basic Min-Max αβ algorithm with

move ordering, killer moves, the history heuristic, and transposition tables, the experiment

became focused on heuristic refinement. In addition to the heuristic functions outlined in

Chapter 3, the following heuristics were added to the agent’s state evaluation:

• Bad Zones: number of one’s pieces on outside columns minus opponent’s pieces in

outside columns

• Average Phalanx Size: reward equals the average phalanx size in current position

• Largest Phalanx Bonus: equals the largest phalanx one owns

• Average Distance: average distance an agent can cover

• Longest distance: greatest distance that can be traversed unimpeded

• Greatest Capture: size of the largest enemy phalanx that can be captured

49

• Pieces Available for Capture: sum of all opposing pieces one could capture

• Average Capture: average number of pieces that can be captured

The threshold for move return was set to 15-seconds for a Min-Max αβ agent set to a

search depth of 3. Once an agent met this threshold, and played at a novice level against

a human player, agent development stopped. The definition of novice play is a qualitative

one. No known agents play Crossings or Epaminondas. The determination of novice level

of play was based upon the agent playing good moves and winning against beginner level

strategies.

4.2 Experiment Two: Complexity Development

Chapter 3 defines the formula used for state-space calculation. For the game-tree

complexity, the agent ran 1,000 self-play games. For both domains, the agent was given

30 seconds to conduct a move. In Crossings, the search depth was set to 5 since the novice

agent could return a move within a 30 second timeframe. The Epaminondas agent was set

to 3 since it could not return a depth of 5 search in under 30 seconds. In order to produce

different games, the agent introduced a random value set to 0.5 for the opening move. As

the game progressed, the probability of a random move diminished by 0.5 after each players

move to a set random probability of 0.01 after a few moves. This ensured the Min-Max αβ

agents played different games each time. Otherwise, Min-Max αβ agents would play the

same game continuously providing little to no knowledge about game characteristics. The

agent sent all board states and the number of moves available per turn to a text file for later

analysis.

4.3 Experiment Three: Assessment of Monte-Carlo Based Agents

Due to the stochastic nature of MC based search agents, a high number of simulations

were run to gain confidence in the results. Each algorithm played 10,000 games per time

interval. For example, UCT played 10,000 games against a Min-Max αβ agent at 1 second,

50

then another 10,000 games at 5 seconds, and so on. The agents played 5,000 times as

White and 5,000 times as Black. This avoided a biased data set where one side may have

dominance over the other and thus, skew the results. Again, Crossings and Epaminondas

are untested domains so these tests also provide information about one player’s advantage

over the other. Agents played 10,000 game sets at 1, 5, 10, and 15-second time intervals to

assess MC performance as time increased across both domains. The agent wrote all game

states, number of simulations completed per turn and win-loss records to a text file for later

analysis.

4.4 Summary

This chapter explained the development of Min-Max αβ agents to play both Crossings

and Epaminondas delving into heuristic evaluation functions and how they apply to the

overall heuristic evaluation of a board state. This data enables an estimate of the game-

tree complexity for each domain. Furthermore, this chapter reviewed how the MC agents

were assessed. The first MC agents, UCT, is well known and heavily used in AI research

today. The second, HUCT, is a modification of the UCT algorithm’s node expansion and

selection stages, along the lines of heuristic guided search proposed by Winands in his work

on Lines of Action. The basic premise is to incorporate heuristic game knowledge to guide

the MC agent to better parts of the search tree early, hoping to avoid poor areas of the tree,

improving UCT’s performance. A more detailed explanation of both algorithms resides in

Chapters 2 and 3.

51

V. Results and Data Analysis

This chapter presents the results of the experiments detailed in Chapter 4. It begins

with the development of a novice Min-Max αβ agent to play both games. Sections 5.2

and 5.3 provide the results of state-space and game-tree complexity computations as well

as general observations about each game. This is followed by a comparison of the game

domains. Section 5.5 provides the results of Monte-Carlo (MC) based agent play. Here,

an assessment of their performance is quantitatively compared to the baseline Min-Max αβ

agent as well as each other. Finally, section 5.6 outlines general observations drawn from

the MC agents’ performance compared across both domains.

5.1 Game Playing Agents

The agents developed through the methods and heuristics outlined in Chapters 3 and 4,

eventually achieved a novice level of play in the Crossings domain. As stated, novice level

play equates to winning against a human beginner player. While qualitative in nature, no

known agents exist to play Crossings to enable quantitative results. The main guidelines for

improvement are the responsiveness of the agent as well as quality of its move selection.

After a series of games, the Crossings agent, set to a search depth of 5, returned novice

level moves in under 15 seconds. Epaminondas proved more difficult.

The Epaminondas agent achieved a beginner level of play. Eventually, through

heuristic refinement, the agent, set to a search depth of 3, returned beginner to novice

level moves within 15 seconds. The agent plays aggressively but the depth limit precludes

large phalanx build up that is vital to better play. A player can take advantage of the agent’s

aggressive nature and quickly develop strategies to beat it. Future work needs to refine

the heuristics to prune away more of the search space to increase the agent’s performance.

52

Setting a goal of 30 seconds for a depth of 5 search is not unreasonable for such a complex

game.

5.2 Properties of Crossings

5.2.1 State-Space Complexity.

Using Winands’ formula described in Chapter 3, the state-space complexity for

Crossings is 3.63x1027, placing it above Lines of Action, Fanarona, and Checkers

[35, 43, 51]. Winands’ method reduced the Allis based state-space estimate by 1011

positions. A complete listing of the number of possible moves per pieces left on the board

is in the appendix (Table A.1).

5.2.2 Game-Tree Complexity.

In order to derive the game-tree complexity the agent played 1,000 self play games

using the Min-Max αβ algorithm set to a depth of 5. This data enabled the calculation

of the average length of a game as well as the average branching factor. The average

game length for Crossings is 39 with a standard deviation of 31. The average branching

factor is 110 with a standard deviation of 27. The formula for estimating the game-tree

complexity of a game is raising the branching factor by the game length. This yields a

game-tree space of 1079, placing Crossings above Fanarona, Othello and Lines of Action

[3, 35, 51]. It is well below Chess and Go. However, surpassing Othello and Lines of Action

is interesting. It highlights the fact that the complexity of movement, in this case allowing

multiple pieces to move at once, directly impacts the overall complexity of the game by

expanding its branching factor. For Crossings, although played on the same size board as

Lines of Action, move complexity increased the game complexity by 1010 states. Taking

into account Crossings’ high state-space and high game-tree complexities, Crossings is

unsolvable by current methods.

Figure 5.1 and Figure 5.2 show the distribution of the average games lengths and

branching factors for Crossings. Game length equals 1 turn (i.e. 1 turn =White’s move or

53

Black’s move, sometimes referred to as ply) The diamond in the upper box plot for both

figures represents the mean whose width is a 95% confidence interval of the mean.

54

Figure 5.1: Crossings Game Lengths.

Figure 5.2: Crossings Branching Factor.

55

5.2.3 Game Observations.

Figure 5.3 shows that the number of moves increases quickly in the first few turns.

After turn 10, the average number of moves available to a player drops rapidly as each

player captures and loses pieces. This indicates that players come into conflict quickly in

Crossings leading to a tactical opening sequence. An analysis of 1,000 self-play games

of a Min-Max αβ agent set to a depth of 5, with a time threshold of 30 seconds per move,

showed little advantage for either side. For all trials, the Min-Max αβ agent played stronger

as White when playing against Upper Confidence Bounds applied to Trees (UCT) and

Heuristic Guided UCT (HUCT) agents.

Figure 5.3: Crossings Branching Factor Over Time.

56

5.3 Properties of Epaminondas

5.3.1 State-Space Complexity.

Using Winands’ formula, the state-space complexity for Epaminondas is 2.41x1061,

placing it above Checkers, Lines of Action, and Chess [3, 35, 43, 51]. Winands’ method

reduced the state-space estimation by 1019 positions. A complete listing of the number of

possible moves per pieces left on the board is in the appendix (Table A.2).

5.3.2 Game-Tree Complexity.

Using the same method applied to Crossings, the average game length for Epaminon-

das is 56 with an average branching factor of 283. These results yield a game-tree space

of approximately10137. This places Epaminondas above Chess (10123) [37] and below Go

10360 [3]. It also places Epaminondas squarely in the category of unsolvable by current

methods according to Herik’s defined categories [24]. Figure 5.4 and Figure 5.5 show the

average games length and branching factor for Epaminondas (Game length = 1 turn = 1

ply). Again box plot diamonds represent the mean with widths showing the 95% confidence

interval of the mean.

57

Figure 5.4: Epaminondas Game Lengths.

Figure 5.5: Epaminondas Branching Factor.

58

5.3.3 Game Observations.

Figure 5.6 shows that the number of moves available to a player rises quickly as the

player builds phalanxes up to ply 20. This slowly diminishes as each player captures

pieces. The distance between players allows for greater phalanx development for each

player. Instead of a player being able to reach the strategic goal (a crossing) early, as is the

case in Crossings, the strategic goal is further down the game-tree. Epaminondas blends

tactical and strategic play and contains longer sequences of mating moves coupled with a

high branching factor. This is important to note and makes Epaminondas more like Chess

in complexity and play style while incorporating a long term strategy similar to Go.

Figure 5.6: Epaminondas Branching Factor Over Time.

59

5.4 Domain Comparisons

Abbott stated that his goal with Epaminondas was to increase the complexity of

Crossings [2]. It has been shown that Abbott achieved his goal by expanding the board

as well as allowing crossed pieces to move and to be captured. Usually researchers merely

contract, or expand, the board size to decrease or increase the complexity of a game. Abbott

shows that it is also reasonable to tweak legal moves to achieve a more complex game. This

increase in game space also leads to different behaviors. While Crossings experiences a

quick peak, then decline, of average moves available per player, Epaminondas has a longer

build up, and then slower decline of average moves available. This behavior is due to the

greater distance between players in Epaminondas. In Crossings, larger phalanxes quickly

occupy enemy territory and come under enemy attack. This leads to a higher attrition rate

earlier in the game. This particular trend may lead to opening gambits that could prove the

game a theoretical win for White since it has the initiative from the beginning of the game

and could possibly build phalanxes that push through Black’s defenses. Such gambits were

not observed in Epaminondas play. In addition, the early attrition rate may enable MC

agents to play Crossings better since the agent possesses fewer moves to play out earlier in

the game while in Epaminondas the number of moves available grows considerably in the

first 20 ply.

5.5 Monte-Carlo Based Search

Each MC agent played against a Min-Max αβ agent set to a search depth of 3. MC

agents played 10,000 games (5,000 as White, 5,000 as Black) at 1, 5, 10, and 15-second

time intervals in both domains.

5.5.1 Crossings.

Crossings was the first test environment and set the baseline for domain comparison.

Figure 5.8 shows the win ratios for UCT and HUCT. They are compared to a base Min-Max

αβ agent playing as White against a Min-Max αβ agent playing as Black set to a search

60

depth of 3. Although tested in discrete intervals, a continuous graph better illustrates the

agents performance over time. Table 5.1 lists actual win rates per time interval.

Figure 5.7: Crossings White Win % (Error bars are 95% confidence interval of the mean).

Table 5.1: Crossings Win/Loss/Draw Percentages: Agents Playing as White.

1 sec 5 sec 10 sec 15 sec

Win Loss Draw Win Loss Draw Win Loss Draw Win Loss Draw

αβ 0.624 0.273 0.103 0.609 0.300 0.091 0.638 0.270 0.092 0.630 0.292 0.078

UCT 0.092 0.908 0.000 0.394 0.605 0.103 0.472 0.528 0.000 0.494 0.506 0.000

HUCT 0.080 0.920 0.000 0.391 0.609 0.000 0.501 0.498 0.001 0.530 0.469 0.001

61

Table 5.2: Crossings T-Tests: Agents as White.

Interval T-Value P-Value Statistically Different?

UCT vs HUCT 1 1.701 0.092 No

UCT vs HUCT 5 0.287 0.775 No

UCT vs HUCT 10 3.193 0.0019 Yes

UCT vs HUCT 15 3.611 0.0005 Yes

ANOVA tests confirmed statistical differences existed between the three algorithms.

Afterwards, Student’s t-tests pinpointed where the algorithms differed significantly.

Table 5.2 shows that UCT and HUCT differ in performance at the 10 and 15 second time

intervals with HUCT outperforming UCT. This shows that the added heuristic guidance

pays dividends at higher time intervals. The performance improvement is modest, however,

with the HUCT agent performing only 3 and 4 percent better respectively. Statistical

differences existed between Min-Max αβ and both MC agents at all time intervals.

62

Figure 5.8: Crossings Black Win % (Error bars are 95% confidence interval of the mean).

Table 5.3: Crossings Win/Loss/Draw Percentages: Agents Playing as Black.

1 sec 5 sec 10 sec 15 sec

Win Loss Draw Win Loss Draw Win Loss Draw Win Loss Draw

αβ 0.273 0.624 0.103 .0300 0.609 0.091 0.270 0.638 0.092 0.292 0.630 0.078

UCT 0.064 0.936 0.000 0.219 0.781 0.000 0.310 0.689 0.001 0.340 0.658 0.002

HUCT 0.061 0.938 0.001 0.218 0.781 0.001 0.342 0.655 0.003 0.347 0.650 0.003

Figure 5.8 shows the win ratios for UCT and HUCT. They are compared to a base

Min-Max αβ agent playing as Black against a Min-Max αβ agent playing as White set to

63

Table 5.4: Crossings T-Tests: Agents as Black.

Interval T-Value P-Value Statistically Different?

UCT vs HUCT 1 0.541 0.590 No

UCT vs HUCT 5 0.137 0.891 No

UCT vs HUCT 10 3.370 0.001 Yes

UCT vs HUCT 15 0.700 0.4857 No

a search depth of 3. Again, a continuous graph better illustrates the agents performance.

Table 5.3 lists actual win rates per time interval.

Student’s t-tests in Table 5.4 show that UCT and HUCT only differ in performance

at the 10 second interval. It is interesting that they perform very closely at the 15-second

interval. One possible explanation is that the lower game-tree complexity, coupled with

fewer moves as the Black player, allows UCT to complete enough simulations to overcome

the gap created by the heuristic guidance HUCT receives. A secondary explanation, is that

MC based methods can over correct their early estimations, resulting in poor play, followed

by good play as the estimations return back to their previous values. Figures 5.9 and 5.10

display the win percentage of the MC agents based upon the number of simulations they

completed. For these figures, the 5,000 trials were broken into samples of 100 games. The

win rates and simulations were then averaged across the 100 game sample. The cluster

of plots is indicative of the time interval. For example, the plots at 90,000 simulations is

drawn from the 1 second time interval, the 200,000 simulations from the 5 second interval

and so on. These figures show the average simulations completed at those time intervals

and compares their win percentages across 100 game sets. This is presented to convey three

points: one, UCT and HUCT produce more simulations when given more time; two, their

average win ratios increase as the time interval increases, and, three, the stochastic nature

of the algorithms as one can see the disparity in win ratios across 100 game samples.

64

Figure 5.9: Crossings White Win % vs Average Simulations.

Both UCT and HUCT display interesting behaviors in figures 5.9 and 5.10. The

increase and decrease of each algorithm’s effectiveness conforms to expected MC behavior.

The data indicates that MC methods have a fluid estimation of a game state. It may find a

good move early on but, as it plays out more simulations, it may choose bad play outs of

the state and begin underestimating it. This leads the agent to select other moves, possibly

overestimating them. This results in poor move selection. Over time, the agent can correct

its move selection back to the better move. A natural extension of these experiments would

be to run more trials beyond the 15-second interval to see if a threshold in win percentage

appears. From these graphs, both UCT and HUCT perform similarly at low simulation

65

Figure 5.10: Crossings Black Win % vs Average Simulations.

intervals. As simulations broach 220,000 games as a White player, HUCT wins more

often when it completes the same amount of simulations as the UCT agent. However, any

noticeable gains at 220,000 disappear as the agent exceeds 500,000 simulations. It is likely

that each agent hits this threshold in a losing game with very few moves left. This allows

the agent to complete lots of simulations quickly, yet for nothing as it is already losing.

Both algorithms appear to have similar behavior as Black, however, UCT begins to win

more after 600,000 simulations. One explanation is that UCT plays a stronger game as

Black and therefore wins more often near an end game state, or, this is merely the ebb and

66

flow phenomenon appearing once again. Comparing the agents win percentage to game

length offers another explanation.

Figures 5.11 and 5.12 show the relative strength of each agent as a function of game

length. Both agents appear more likely to win as the game length increases. As a White

player, if the HUCT agent exceeded the 26th turn of the game, it became more likely to

win than a UCT agent. The same is true for the 23rd turn as a Black player. However,

game length is not always indicative of success. It is merely noted that longer games seem

to favor the HUCT algorithm possibly indicating stronger end game play as the number

of available moves diminishes, allowing HUCT to find good moves near the end of the

game. However, from a simulation standpoint, the HUCT algorithm does poorly as the

agent achieves 500,000 simulated games. It is a fascinating paradox then, where the agent

wins more often as the game length increases, yet appears to lose in game states where

it can complete a high number of simulations. It may be that HUCT wins more games

through late game crossings with more pieces remaining on the board while UCT wins

more games through attrition. This means the heuristic guided node selection creates an

agent that plays strategically different moves than its UCT counterpart.

67

Figure 5.11: Crossings White Win % vs Game Length.

68

Figure 5.12: Crossings Black Win % vs Game Length.

5.5.2 Epaminondas.

The agents were tested in the higher complexity domain of Epaminondas. The MC

agents and time intervals remained the same. Only the domain changed.

69

Figure 5.13: Epaminondas White Win % (95 % Confidence Interval of the Mean).

Table 5.5: Epaminondas Win/Loss/Draw Percentages: Agents Playing as White.

1 sec 5 sec 10 sec 15 sec

Win Loss Draw Win Loss Draw Win Loss Draw Win Loss Draw

αβ 0.484 0.459 0.057 0.596 0.403 0.001 0.593 0.406 0.001 0.596 0.401 0.003

UCT 0.068 0.932 0.000 0.209 0.791 0.000 0.304 0.696 0.000 0.351 0.649 0.000

HUCT 0.042 0.958 0.000 0.173 0.827 0.000 0.281 0.719 0.001 0.351 0.648 0.001

Figure 5.13 and Table 5.5 show the win ratios for UCT and HUCT. ANOVA tests

indicated differences existed between the three algorithms. Students t-tests (Table 5.6)

70

Table 5.6: Epaminondas T-Tests: Agents as White.

Interval T-Value P-Value Statistically Different?

UCT vs HUCT 1 6.105 0.000 Yes

UCT vs HUCT 5 4.701 0.000 Yes

UCT vs HUCT 10 2.876 0.005 Yes

UCT vs HUCT 15 0.039 0.969 No

confirmed that UCT outperformed HUCT at every time interval except 15 seconds. In

addition, both algorithms fell far short of their win percentages in Crossings. UCT’s

performance declined by an average of 10 percent across all intervals. HUCT’s

performance fell by 13 percent across the same intervals. Clearly, both algorithms’

performance declined as they went from a lower game-tree complexity to a higher one.

Table 5.6 shows the Student’s t-tests results for both agents playing as White. The results

indicate that in a large game-tree space, evaluating the board state significantly impacts

HUCT’s performance. The loss of simulated games adversely affects the agent. Only in the

15-second time interval is it able to catch up with the UCT agent. These findings indicate

that the heuristic function for Epaminondas needs further refinement. A better evaluation

of the board state will lead HUCT to more promising parts of the search space. In addition,

the decision complexity may also impact its performance. With a large number of moves to

evaluate, the agent may not have enough time to validate a chosen move through simulated

games. A combination of heuristic refinement as well as speeding board state evaluations

may overcome these issues. Additionally, longer time intervals, 30 to 60 seconds per move,

could prove fruitful.

Figure 5.14 and Table 5.7 show that when playing Black, HUCT performed more

closely to UCT. Student’s t-tests confirm that the UCT algorithm only outperforms HUCT

at the lower time intervals of 1 and 5 seconds. HUCT performs as well as UCT in the 10

71

and 15 second intervals in this scenario. One possible reason for this behavior comes from

the aggressive nature of the Min-Max αβ Epaminondas agent. If UCT and HUCT thwart

early attacks, the game space grows smaller through piece attrition. This allows both agents

to perform more simulations and find better moves. For HUCT, this means the heuristic

function allows it to pull even with UCT although it is still performing fewer simulations

per turn. However, they both fail to overcome Min-Max αβ’s advantage.

Figure 5.14: Epaminondas Black Win % (95% Confidence Interval of the Mean).

Figures 5.15 and 5.16 show how the agents’ simulations compared with their win

percentage. As with Crossings, the 5,000 games were broken into 100 game samples

72

Table 5.7: Epaminondas Win/Loss/Draw Percentages: Agents Playing as Black.

1 sec 5 sec 10 sec 15 sec

Win Loss Draw Win Loss Draw Win Loss Draw Win Loss Draw

αβ 0.459 0.484 0.057 0.403 0.596 0.001 0.406 0.593 0.001 0.401 0.596 0.003

UCT 0.060 0.940 0.000 0.115 0.885 0.000 0.191 0.809 0.000 0.244 0.756 0.000

HUCT 0.044 0.956 0.000 0.104 0.896 0.000 0.178 0.822 0.000 0.242 0.758 0.000

Table 5.8: Epaminondas T-Tests: Agents as Black.

Interval T-Value P-Value Statistically Different?

UCT vs HUCT 1 3.809 0.0002 Yes

UCT vs HUCT 5 2.112 0.037 Yes

UCT vs HUCT 10 1.579 0.118 No

UCT vs HUCT 15 0.2773 0.7822 No

across the 1, 5, 10, and 15 second time intervals to calculate average simulations and win

percentages. In the Epaminondas domain, HUCT plays evenly with UCT beginning at

50,000 simulations per turn when playing White. A similar trend is seen in Figure 5.16 with

both experiencing drop offs at 120,000 and 140,000 simulations respectively. Although

HUCT did not win more often than UCT, it clearly plays about as well even though the

domain is much larger than Crossings. The crossover point for success is at 15 seconds,

and one could extrapolate that HUCT may perform better than UCT at a 30 second interval

in this domain as the White player. We cannot make the same conclusion about playing

Black since both algorithms experience a steep decline in win percentage after 140,000

simulations per turn. Additionally, the sharp reduction in simulations is readily apparent

between the two domains with neither agent coming close to the 200,000 and 500,000

simulated games accomplished playing Crossings.

73

Figure 5.15: Epaminondas White Win % vs Sims per Ply.

74

Figure 5.16: Epaminondas Black Win % vs Sims per Ply.

Figures 5.17 and 5.18 relay very interesting details. It appears that as the game goes

longer, both agents appear more likely to lose. This is especially true for White after turn

70 and Black around turn 56. The average length of an Epaminondas game is 56 with a

standard deviation of 4. This indicates that the longer games are indicative of either Min-

Max αβ having to relaunch attacks after many failed ones, still ultimately winning, or that

neither MC based algorithm performs well in a higher tactical environment where there are

disparate pieces left on the game board. In this situation, the agent may rate a singleton

phalanx advancing towards the enemy back row higher than collecting pieces together into

a larger phalanx, two to three moves down the decision tree. In these situations Min-

75

Max αβ has the upper hand since it evaluates its next few moves, thus building larger, more

effective phalanxes able to cross the board more rapidly than the singletons moved by either

MC agent. The average length of games between all three agents indicates that the earlier

evaluation of the average length of an Epaminondas game may be too low. Again, further

refinement of the Epaminondas heuristic function could solidify this observation.

Figure 5.17: Epaminondas White Win % vs Game Length.

76

Figure 5.18: Epaminondas Black Win % vs Game Length.

5.6 Observations

According to the data, MC based agents fair better in the smaller search domain

of Crossings. However, there is more to their failure in Epaminondas than sheer game-

tree complexity. If game-tree complexity alone affected MC agents, then they would fail

spectacularly in Go, which is not true. This indicates the possibility that complex moves

and mating combinations may temper MC effectiveness. If a game has a high state-space

and game-tree complexity, yet consists of smooth board transitions, then MC based agents

can perform well [15]. A game of Go does not end abruptly and board transitions are

seldom drastic. The same cannot be said of Chess in which games can end abruptly and

77

where favorable board positions can instantly become untenable. According to [36] this is

due to trap states existing in Chess where an Min-Max αβ agent is able to identify a shallow

trap (a mate in three for example) while MC agents fail to estimate such a state correctly.

Others have noted similar issues in tactical board positions in Hex [9] and even in some

Go board states [60]. Winands provides a similar analysis of UCT failures in the domain

of Lines of Action (LOA) [57]. The drop off in effectiveness of both MC based agents in

Epaminondas indicates the game contains tactical states which a Min-Max αβ agent can

correctly navigate while MC based agents do not.

The puzzles presented in Chapter 2 for Epaminondas serve as prime examples of

tactical board states that can arise in the game. Both MC based agents were given these

board positions with a 6 hour time limit. Neither produced the winning move for any of the

puzzles while the Min-Max αβ agent correctly solved each one with puzzle three taking 3

hours to solve while it was able to solve the others in under a minute. These puzzles serve

as an indicator of how smaller tactical states can heavily affect the outcome of a game,

yet, even in these smaller sub-domains, MC agents failed to achieve success. However, the

agents did perform well in Crossings, realistically just a smaller version of Epaminondas,

which contains similar tactical positions, begging the question: why?

One, Crossings is a smaller domain and has a smaller decision tree. At the first

ply, it has one hundred less states to choose from than Epaminondas and this game-tree

space grows exponentially smaller than Epaminondas at each ply down the tree. The

data shows that the MC agents do better as they complete more game simulations. In

Epaminondas they completed far fewer simulations at each time interval resulting in poorer

play. This indicates that game-complexity plays a role in the effectiveness of MC agents.

However, as one increases the time interval, MC agents can slowly overcome the game-

complexity issue as they can complete more simulations and derive better estimates for

good moves. Expanding the time interval to 30, 45, and 60 second trials could show

78

MC agent improvement in Epaminondas. A second reason for poor play is the distance

between the players in Epaminondas. In Crossings, the games are shorter with an increased

likelihood of attack and piece attrition. Less pieces on the board results in more simulations

completed by the MC agent. Barring a super-aggressive start, attacks come later in a

game of Epaminondas, approximately 20 moves into the game, allowing less simulations

for the MC agents while playing into the tactical strength of Min-Max αβ agents. The

coupling of a high decision complexity with a high frequency of tactical subgames could

be a contributor of MC failure. Failure that can be overcome through the introduction of

heuristic knowledge. Lorentz [32], Winands [56], and Lorentz and Horey [33] have all

shown that the introduction of heuristic knowledge into a MC agent can positively affect its

ability to counter Min-Max αβ tactical strength in the games of Amazons, Lines of Action

and Breakthrough. HUCT’s performance in Crossings shows similar results. As noted

earlier, with more time, and a better heuristic function, similar results may be achieved in

Epaminondas. For now, Epaminondas remains in the domain of Min-Max αβ.

5.7 Summary

This chapter analyzed the data from each of the three experiments outlined in Chapter

4. First, it summarized how agents for each domain were constructed. Then, for the first

time in Artificial Intelligence (AI) literature, it presented the state-space and game-tree

complexities for Crossings and Epaminondas. Additionally, it proved that both games are

unsolvable by current methods. This chapter also analyzed the effectiveness of two MC

agents, UCT and HUCT, across both domains. It showed that adding heuristic knowledge

to a MC agent positively affects its play in the smaller domain of Crossings but negatively

affects its play in the higher complexity domain of Epaminondas. The chapter also analyzed

how game length and simulations accomplished by the MC agents compared with win

ratios to gather confidence in these findings. These results showed that the heuristic

function for Epaminondas needs further refinement as both the number of simulations

79

and game length appeared to have a negative impact on both MC algorithms. Finally,

by analyzing the data presented, this chapter proposed reasons why MC agents may fail

in games such as Hex and Chess and identified Epaminondas as another domain where

Min-Max αβ agents currently dominate MC methods.

80

VI. Conclusions

This chapter begins by answering each research question in detail and provides

observations derived from the experimental data (Sections 6.1-6.5). Afterwards, Section

6.6 provides general conclusions about each game domain. Finally, Section 6.7 finishes the

chapter outlining areas of future work.

6.1 Are Crossings and Epaminondas solvable?

Through building two game playing agents using the Min-Max with Alpha-Beta (αβ)

pruning algorithm, the state-space and game-tree complexity for Crossings are 1023 and

1081 respectively. Crossings outstrips Lines of Action and Checkers; games played on the

same size board. Epaminondas’ state-space and game-tree complexities are 1061 and 10137,

placing it above well researched games such as Othello, Hex 11x11 and Chess. However,

it falls short of Go.

At this time, neither game appears solvable by current methods. However, during

the analysis of Crossings the White player seemed to have a slight advantage in all the

games played. Results indicate strong opening sequences exist that may prove unbeatable.

If they do exist, then Crossings may prove solvable although it has high state-space and

game-tree complexities. Epaminondas did not display such behavior since neither player

can launch large, concerted attacks into each other’s territory until at least five to ten turns

have elapsed. The distance between the players appears to lead to more balanced play with

neither player having a distinct advantage over the other.

6.2 Does move complexity impact game complexity?

The unique moves available to a player in both Crossings and Epaminondas affect

the complexity of the game. The analysis of Crossings distinctly shows how its unique

movement rules push its complexity beyond well known games such as Lines of Action.

81

Its complexity hinges on the number of moves available to a player each turn. Analysis of

move complexity also indicates that both games are tactical in nature with Epaminondas

incorporating both long term strategy as well as tactical move sequences which may have

led to the poor performance of Monte-Carlo (MC) agents in this domain. Although very

similar to Epaminondas, MC agents faired better in Crossings, even surpassing the Min-

Max αβ agent playing Black. However, the MC algorithms lagged severely behind Min-

Max αβ agents in Epaminondas at all time intervals.

6.3 With respect to MC-based search algorithms such as Upper Confidence

Bounds Applied to Trees (UCT), does game complexity impact the algorithm’s

performance?

Both algorithms performed poorly as they moved from Crossings to Epaminondas.

This behavior is akin to Min-Max αβ performance shortfalls as the environment grows

in complexity where heuristic evaluation becomes vitally important in pruning the search

space. However, MC success in Go prevents making the assumption that only game-tree

complexity plays a role in MC success or failure. As discussed previously, MC success

may hinge more on game state transition smoothness, an idea discussed in [19] concerning

the UCT algorithm. Go contains simple move generation: placing one stone at a time with

resulting captures of connected stones. Stones never move positions and, although captures

occur, the transition between states is smooth (little changing between them). This does not

hold true in Crossings, Chess and Epaminondas, and may indicate that producing expert

level agents for Go on a 19 x 19 board may not be the proverbial “holy grail.” Instead,

researchers may find that hybrid techniques are necessary to solve tactical games whose

game-tree complexities are far less than Go’s.

82

6.4 Does adding heuristic knowledge to UCT improve its performance?

Adding heuristic knowledge to a MC based search agent can positively impact the

agents performance but only for the smaller of the two games presented. For Epaminondas,

regular UCT outperformed Heuristic Guided UCT (HUCT) at almost every interval. The

branching factor for Epaminondas affected the performance of the algorithm as well as a

lack of game knowledge. Even the Min-Max αβ agent shows worse performance in the

game and any setting beyond a search depth of 3 resulted in Min-Max αβ exceeding the

time threshold and returning bad moves. The heuristic function for Epaminondas needs

further improvement in order to prove the value of the HUCT algorithm in a large search

space. Additionally, further refinement of the heuristic evaluation function can improve the

game-tree complexity estimation.

6.5 Do UCT and HUCT perform better as time intervals increase?

Although each algorithms’ performance dropped when moving from Crossings to

Epaminondas each agent’s win percentage increased as the time interval expanded. These

results fall in line with current research and the expected behavior of the algorithms. Both

UCT and HUCT perform better as they accomplish more simulations per turn. When

given more time, each can perform more simulations, which enables them to make better

decisions about the game states. Future work can determine if a simulation threshold exists

for both algorithms with respect to each domain. If a threshold is reached, and the win ratio

does not meet or exceed Min-Max αβ’s win ratio, then one could conclude that the domain

thwarts MC based agents.

6.6 General Conclusions

Crossings and Epaminondas provide interesting testing environments for future work.

The steep tactical slant of each game, and their complex movements, open a promising

area of research where decision complexity is crucial to the problem environment. One

83

can easily correlate high branching factors with complex real-world environments where

an agent may face multiple decisions at once. Generic MC methods may prove inadequate

in solving such problems. However, heuristic based MC methods may fair better. Although

MC methods have shown promise in General Game Playing (GGP), there may be a limit to

their effectiveness. The games selected for GGP range in complexity but do have general

heuristic knowledge (such as the concept of mobility) added to them [20]. Of course, the

focus is on developing agents that can play any game and MC methods may prove vital to

reaching this goal. The ability to build game playing agents with zero game knowledge is

impressive and worthy of future study. In addition, as hardware and computational power

increases, so will the effectiveness of MC based search algorithms.

6.7 Future Work

The interesting phalanx maneuvers encountered in the games of Crossings and

Epaminondas generate new, and unique, game domains. This twist to the games makes

them stand out from other two-player strategy games where pieces may value high mobility

and centrality akin to Lines of Action or a combination of such ideas in Chess. However,

these games never allow multiple pieces to move together and capture multiple opposing

pieces at once. Although this may seem very subtle, it has a huge impact on the game and

the algorithms playing it. For one, move generation becomes more time consuming. This

costs algorithms such as Min-Max, Min-Max Alpha-Beta, and Monte-Carlo based agents.

The longer move generation takes, the less time an agent has to search. One important

breakthrough for both games can come through ingenious ways to speed move generation.

Furthermore, the analysis of the board for captures and movements may be compressed.

With these modifications, agents for both domains will become stronger in the future since

they can search deeper and faster in the same amount of time.

Another avenue of research resides in tuning the heuristic evaluation function for these

games, especially Epaminondas. One may find Epaminondas’ complexity to be greater

84

than currently estimated. Heuristic refinement will also assist the HUCT algorithm. Results

showed that the HUCT agent was able to play on the same level, if not better, than the basic

UCT algorithm with minimal code modification. Heuristic development for Crossings and

Epaminondas is just beginning. After analyzing thousands of self-play games, there are

multiple areas of interest. For example, a weighted graph of the most played portions

of an Epaminondas board showed an extremely high crossing rate at columns D and K.

One could encode defense of these columns into the heuristic function. In addition, it

appears White has an advantage in most of the games, consistently winning more often

than Black. Additionally, there are certain patterns that arise during play for defensive

measures. Incorporating these into a pattern database could increase the speed of heuristic

evaluation. The heuristic function can be further tuned with real-time learning algorithms

such as TD-Lambda or possibly even through Gaussian estimation. Both of these methods

require the agent to learn weighted factors for the heuristic functions used by the agents

to evaluate the board state. These weights can reduce the search space for Min-Max αβ

agents, resulting in faster response times and better move selection. This could lead to

better game complexity estimates as well as stronger HUCT agents.

Finally, one can test the HUCT algorithm in other game environments. Games such

as Lines of Action and Hex may be well suited for testing since they are heavily researched

and strong heuristic evaluation functions exist for each game. Additionally, the complexity

of Lines of Action is slightly smaller than Crossings and could be used to verify the results

presented. Finally, incorporating the RAVE concept of slowly dwindling the weight of the

heuristic value in HUCT is another promising avenue of work. This means, that as the

algorithm completes more simulations, the heuristic value becomes less important, relying

more on the estimated play out results.

85

Appendix: Appendix A

Table A.1: Number of Possible Positions Per Pieces on Board for Crossings

Pieces # Positions

2 4,032

3 329,280

4 10,161,984

5 243,980,352

6 4,798,355,520

7 79,515,668,544

8 1,133,098,330,176

9 14,100,779,266,112

10 155,108,571,967,552

11 1,522,884,161,171,520

12 13,452,143,423,713,344

13 107,617,147,389,734,976

14 784,067,788,125,237,312

15 5,227,118,587,501,604,928

16 32,016,101,348,447,350,848

17 180,794,048,874,410,966,400

18 944,024,242,258,584,876,480

19 4,568,396,469,282,496,744,320

20 20,519,761,083,204,457,478,880

21 85,589,233,763,681,006,029,440

22 331,306,115,164,919,217,610,560

23 1,188,092,899,283,252,528,764,800

24 3,936,420,640,385,192,265,984,720

25 12,006,641,574,836,196,656,135,040

26 33,561,989,414,523,512,489,171,520

27 85,476,562,476,935,603,489,953,920

28 196,729,524,470,922,506,518,623,840

29 403,931,343,020,145,070,418,467,200

30 722,588,291,402,703,959,304,146,880

31 1,068,173,995,986,605,852,884,391,040

32 1,101,554,433,361,187,285,787,028,260

Total: 3,629,590,441,722,350,978,583,241,845

86

Table A.2: Number of Possible Positions Per Pieces on Board for Epaminondas

Pieces # Positions

2 28,056

3 6,181,672

4 512,274,504

5 33,607,019,880

6 1,825,982,909,800

7 84,516,924,524,136

8 3,401,806,213,197,672

9 120,953,109,803,553,384

10 3,846,308,891,753,861,736

11 110,493,964,526,748,078,696

12 2,891,258,738,449,908,765,288

13 69,390,209,722,797,811,012,200

14 1,536,497,501,004,808,673,006,184

15 31,549,415,353,965,404,752,941,672

16 603,382,568,644,588,365,900,517,992

17 10,789,900,051,056,168,425,515,618,920

18 181,030,545,301,053,492,472,540,271,208

19 2,858,377,031,069,265,670,619,057,328,744

20 42,589,817,762,932,058,492,223,954,588,264

21 600,313,621,801,328,062,557,061,455,516,264

22 8,022,372,945,890,475,017,808,003,087,700,584

23 101,849,256,530,435,595,878,258,126,157,222,504

24 1,230,678,516,409,430,116,862,285,691,066,749,544

25 14,177,416,509,036,634,946,253,531,161,089,249,896

26 155,951,581,599,402,984,408,788,842,771,982,029,416

27 1,640,379,599,045,572,132,299,853,012,860,848,280,168

28 16,520,965,961,816,119,332,448,519,629,527,115,076,200

29 159,512,774,209,510,449,373,417,899,607,583,356,545,600

30 1,478,151,627,829,905,397,705,378,180,929,378,783,244,896

31 13,160,312,387,165,439,455,997,260,070,569,634,846,284,736

32 112,684,938,948,304,476,087,649,495,004,331,338,372,513,742

33 928,789,296,086,692,530,519,176,920,862,542,483,594,851,168

34 7,375,475,915,302,998,692,501,956,288,517,719,836,643,567,200

35 56,470,651,473,862,610,411,420,178,883,887,800,079,091,585,536

36 417,173,698,928,978,359,744,784,031,104,647,568,484,589,498,656

37 2,975,279,577,358,930,690,954,095,501,794,704,303,044,454,619,712

38 20,495,187,576,348,853,903,247,506,312,010,856,710,421,790,390,368

39 136,399,210,053,397,895,119,460,781,542,139,053,935,605,577,425,600

40 877,083,619,544,198,810,863,898,927,841,472,912,163,030,543,338,872

41 5,448,417,679,883,464,573,520,299,120,385,662,559,492,088,662,863,872

42 32,682,863,369,061,187,394,280,482,185,676,987,909,292,552,027,976,704

43 189,188,862,937,091,814,961,146,511,343,601,808,647,799,839,402,756,096

44 1,055,815,421,478,083,952,425,192,010,850,820,279,952,209,311,619,520,000

45 5,673,819,140,221,690,144,249,260,636,953,436,458,594,202,126,690,163,200

46 29,317,016,584,100,626,914,184,154,105,221,381,391,940,753,482,616,979,200

47 145,395,713,795,519,275,461,335,067,886,983,645,921,567,498,361,554,470,400

48 690,613,288,111,764,077,966,511,192,341,086,331,236,472,494,328,732,493,600

49 3,133,249,789,630,968,269,315,497,775,187,618,959,484,519,783,359,054,400,000

50 13,529,568,060,420,736,496,851,395,956,424,095,325,851,628,853,301,523,886,080

51 55,326,008,764,875,843,447,075,975,428,063,257,126,722,828,560,574,705,146,880

52 212,639,164,036,988,771,847,662,625,404,939,619,560,001,844,010,535,661,512,960

53 758,526,038,455,408,694,108,063,032,765,684,383,214,038,468,611,614,683,210,240

54 2,452,983,725,183,300,406,529,161,316,522,772,199,488,471,453,706,284,795,155,200

55 6,820,491,333,436,493,813,276,204,636,185,269,042,480,140,139,573,572,357,260,800

56 13,762,777,154,970,067,873,218,055,783,730,989,317,861,711,353,068,101,363,758,400

Total: 24,080,278,526,707,819,549,851,463,172,086,945,496,984,186,580,573,839,562,868,527

87

Bibliography

[1] Abbott, Robert. “Under the Strategy Tree”, 1975. URL http://www.logicmazes.com/

games/tree.html.

[2] Abbott, Robert. “Epaminondas”, December 2010. URL http://www.logicmazes.com/

games/epam.html.

[3] Allis, Louis Victor. Searching for Solutions in Games and Artificial Intelligence.

Ph.D. thesis, University of Maastricht, September 1994.

[4] Allis, Louis Victor, H. Jaap van den Herik, and M. Huntjens. Go Moku and Threat-
Space Search. Technical report, University of Maastricht, 1993.

[5] Arneson, Broderick, Ryan Hayward, and Philip Henderson. “Mone Carlo Tree Search

in Hex”. IEE Transactions on Computational Intelligence and AI in Games, 2(4):251–

258, 2010.

[6] Ashraf Abdelbar, Sara Mitri, Sherif Ragab. “Applying Co-evolutionary Particle

Swarm Optimization to the Egyptian Board Game Seega”. Proceedings of the First
Asian-Pacific Workshop on Genetic Programming, 9–15. Canberra, Australia, 2003.

[7] Bouzy, B. and B. Helmstetter. “Monte Carlo Go Developments”. Heinz, Herik,

and Iida (editors), 10th Advances in Computer Games, 159–174. Kluwer Academic

Publishers, 2003.

[8] Boyle, Alan. “10 Most Important Board Games in History”. URL http://listverse.

com/2013/01/20/10-most-important-board-games-in-history/.

[9] Browne, Cameron. “Problem Case for UCT”. IEEE Transactions on Computational
Intelligence and AI Games, 5(1):69–74, March 2013.

[10] Browne, Cameron, Daniel Whitehouse, Peter Cowling, and Spyridon Samothrakis. “A

Survey of Monte Carlo Tree Search Methods”. IEEE Transactions on Computational
Intelligence and AI Games, 4(1):1–43, March 2012.

[11] Brügmann, Bernd. “Monte Carlo Go”. Computer Go Magazine, October 1993.

[12] Cazenave, T. “Abstract Proof Search”. Lecture Notes in Computer Science, 2063:40–

55, 2001.

[13] Cazenave, Tristan. “Multiplayer Go”. Computer Games 2008, 50–59. LNCS 5131,

2008.

[14] Chaslot, Guillaume M.J-B., Mark H.M. Winands, and H. Jaap van den Herik.

“Parallel Monte-Carlo Tree Search”. Computer Games, 60–71. 2008.

88

[15] Coquelin, P.A. and R. Munos. “Bandit Algorithms for Tree Search”. Proceedings
of the 23rd Conference on Uncertainty in Artificial Intelligence, 67–74. Vancouver,

Canada, 2007.

[16] Cormen, Thomas, Charles Leiserson, Ronald Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, second edition, 2003.

[17] Coulom, Rémi. “Efficient Selectivity and Backup Operators in Monte-Carlo Tree

Search”. In: Proceedings Computers and Games 2006, CG’06, 72–83. Springer-

Verlag, Berlin, Heidelberg, 2006.

[18] Enzenberger, Markus. Fuego – An Open-source Framework for Board Games and Go
Engine Based On Monte-Carlo Tree Search. Technical report, University of Alberta,

Edmonton, Alberta, May 2009.

[19] Gelly, Sylvain, Levente Kocsis, David Silver, and Csaba Szepesvári. “The

Grand Challenge of Computer Go: Monte Carlo Tree Search and Extensions”.

Communications of the ACM, 55(3):106–113.

[20] Genesereth, Michael and Yngvi Bjornsson. “The International General Game Playing

Competition”. Artificial Intelligence, 107–111, 2013.

[21] Griffith, Arnold K. “Empirical Exploration of the Performance of the Alpha Beta Tree

Searching Heuristic”. IEEE Transactions on Computers, c-25(1):6–10, January 1976.

[22] Handscomb, Kerry. “Epaminondas . . . a game of classical elegance”, 2000. URL

www.logicmazes.com/games/epam/index.html.

[23] Henderson, Philip, Broderick Arneson, and Ryan Hayward. “Solving 8 x 8 Hex”.

International Joint Conference on Artificial Intelligence, 505–510. IJCAI, 2009.

[24] van den Herik, H. Jaap, Jos W.H.M. Uiterwijk, and Jack van Rijswijck. “Games

solved: Now and in the future”. Artificial Intelligence, 134:277–311, 2002.

[25] Hollander, Yaron and Joseph Prashker. “The applicability of non-cooperative game

theory in transport analysis”. Transportation, 33:481–496, 2006.

[26] IBM. “Deep Blue”, March 2012. URL http://www-03.ibm.com/ibm/history/ibm100/

us/en/icons/deepblue/.

[27] Kishimoto, Akihiro. Transposition Table Driven Scheduling for Two-Player Games.

Master’s thesis, University of Alberta, 2002.

[28] Kloetzer, Julien, Hiroyuki Iida, and BRUNO BOUZY. “The Monte-Carlo Approach

in Amazons”. Computer Games Games Workshop. 2007.

[29] Knuth, Donald E. and Ronald W. Moore. “An Analysis of Alpha-Beta Pruning”.

Artificial Intelligence, 6:293–326, 1975.

89

[30] Kocsis, Levente and Csaba Szepesvári. “Bandit based Monte-Carlo Planning”. In:
ECML-06. Number 4212 in LNCS, 282–293. Springer, 2006.

[31] Lee, Chang-Sing, Matrin Müller, and Olivier Teytaud. “Special Issue on Monte Carlo

Techniques and Computer Go”. IEEE Transactions on Computational Intelligence
and AI in Games, 2(4):225–228, December 2010.

[32] Lorentz, Richard. “Amazons Discover Monte-Carlo”. H. Jaap van den Herik (editor),

Computers and Games, volume 5131, 13–24. Springer Berlin Heidelberg, 2008.

[33] Lorentz, Richard and Therese Horey. “Programming Breakthrough”. 8th Interna-
tional Conference on Computers and Games. Yokohama, Japan, 2013.

[34] Lorenzi, Rossella. “Oldest Gaming Tokens Found in Turkey”. URL http://news.

discovery.com/history/archaeology/oldest-gaming-tokens-found-130814.htm.

[35] Maarten, Schadd. Selective Search in Games of Different Complexity. Ph.D. thesis,

University of Maastricht, 2011.

[36] Ramanujan, Raghuram, Ashish Sabharwal, and Bart Selman. “On Adversarial Search

Spaces and Sampling-Based Planning”. International Conference on Automated
Planning and Scheduling. 2010.

[37] Rijswijck, J. van. Computer Hex: Are bees better than fruitflies? Master’s thesis,

University of Alberta, Edmonton, Alberta, Fall 2000.

[38] Russell, Stuart and Peter Norvig. Artificial Intelligence, A Modern Approach. Pearson

Education, Inc., Upper Saddle River, New Jersey 07458, third edition, 2010.

[39] Sackson, Sid. A Gamut of Games. Random House, New York, 1969.

[40] Saito, Jahn-Takeshi. Solving Difficult Game Positions. Ph.D. thesis, University of

Maastricht, 2010.

[41] Samuel, Arthur. “Some Studies in Machine Learning Using the Game of Checkers”,

January 2011. URL http://www.cs.unm.edu/∼terran/downloads/classes/cs529-s11/

papers/samuel 1959 B.pdf.

[42] Schaeffer, Jonathan. “History Heuristic and Alpha-Beta Search Enhancements”.

IEEE Transactions on Pattern Analysis and Machine Intelligence, II(II):1203–1212,

November 1989.

[43] Schaeffer, Jonathan. “Checkers is Solved”. Science, 317, September 2007.

[44] Sreedhar, Suhas. “Checkers, Solved!”, July 2007. URL http://spectrum.ieee.org/

computing/software/checkers-solved.

90

[45] Tarrant, Carolyn, Mary Dixon-Woods, Andrew Coleman, and Tim Stokes. “Con-

tinuity and Trust in Primary Care: A Qualitative Study Informed by Game The-

ory”. Annals of Family Medicine, 8(5):440–446, September 2010. URL http:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC2939420/.

[46] Tesauro, Gerald. “Temporal Difference Learning”. Communications of the ACM,

38(3):58–68, March 1995.

[47] Thomsen, Thomas. “Lambda-search in game trees – With application to Go”. ICGA,

23(4):203–217, 2000.

[48] Turing, A. M. “Computing Machinery and Intelligence”, November 2012. URL

http://www.loebner.net/Prizef/TuringArticle.html.

[49] Wagner, J. and I. Virag. “Solving Renju”. ICGA, volume 24, 30–34. 2001.

[50] van der Werf, Erik, H. Jaap van den Herik, and Jos W.H.M. Uiterwijk. “Solving Go

on Small Boards”. ICGA, 92–107, June 2003.

[51] Winands, Mark H.M. Analysis and Implementation of Lines of Action. Master’s

thesis, University of Maastricht, August 2000.

[52] Winands, Mark H.M. Informed Search in Complex Games. Ph.D. thesis, University

of Maastricht, December 2004.

[53] Winands, Mark H.M. “6 x 6 LOA is Solved”. ICGA Journal, 234–238, December

2008.

[54] Winands, Mark H.M. and Tngvi Bjornsson. “Alpha/Beta Based Play-outs in Monte-

Carlo Tree Search”. 2011.

[55] Winands, Mark H.M. and Yngvi Björnsson. “Evaluation Function Based Monte-Carlo

LOA”. 12th International Conference, ACG 2009, 33–34. May 2009.

[56] Winands, Mark H.M. and Yngvi Björnsson. “Alpha/Beta Based Play-outs in Monte-

Carlo Tree Search”. IEEE Conference on Computational Intelligence and AI in
Games, 110–117. 2011.

[57] Winands, Mark H.M., Yngvi Björnsson, and Jahn-Takeshi Saito. “Monte-Carlo Tree

Search Solver”. Proceedings of the 6th International Conference on Computers and
Games, 25–36. Springer-Verlag, 2008.

[58] Winands, Mark H.M., Yngvi Björnsson, and Jahn-Takeshi Saito. “Monte Carlo Tree

Search in Lines of Action”. IEEE Transactions on Computational Intelligence and AI
Games, 2(4):239–250, December 2010.

91

[59] Winands, Mark H.M and J.W.H.M. Uiterwijk. PN, PN2, PN* in Lines of Action.

The CMG Sixth Computer Olympiad: Computer-Games Workshop Proceedings

0922-8721, University of Maastricht, Department of Computer Science, Universiteit

Maastricht, Maastricht, The Netherlands, 2001.

[60] Yoshimoto, H., K. Yoshizoe, T. Kanoeko, A. Kishimoto, and K. Taura. “Monte

Carlo has a way to go”. Proceedings of the 21st National Conference on Artificial
Intelligence, 1070–1075. 2006.

[61] Ziles, Sandra and Robert Holte. “The computational complexity of avoiding spurious

states in state space abstraction”. Artificial Intelligence, 174:1072–1092, June 2010.

[62] Zobrist, Albert. A New Hashing Method with Application for Game Playing.

Technical Report 88, The University of Wisconsin, April 1970.

92

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

27–03–2014 Master’s Thesis June 2012–March 2014

Complexity, Heuristic, and Search Analysis
for the Games of Crossings and Epaminondas

King Jr, David W., Captain, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENG-14-M-44

Intentionally Left Blank

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

Games provide fertile research domains for algorithmic research. Often, game research helps solve real-world problems
through the testing and refinement of search algorithms in game domains. Other times, game research finds limits for
certain algorithms. For example, the game of Go proved intractable for the Min-Max with Alpha-Beta pruning algorithm
leading to the popularity of Monte-Carlo based search algorithms. Although effective in Go, and game domains once
ruled by Alpha-Beta such as Lines of Action, Monte-Carlo methods appear to have limits too as they fall short in tactical
domains such as Hex and Chess. In a continuation of this type of research, two new games, Crossings and Epaminondas,
are presented, analyzed and used to test two Monte-Carlo based algorithms: Upper Confidence Bounds applied to Trees
(UCT) and Heuristic Guided UCT (HUCT). Results indicate that heuristic knowledge can positively affect UCT’s
performance in the lower complexity domain of Crossings. However, both agents perform worse in the higher complexity
domain of Epaminondas. This identifies Epaminondas as another domain that poses difficulties for Monte Carlo agents.

15. SUBJECT TERMS

Games, Artificial Intelligence, UCT, Crossings, Epaminondas

U U U UU 106

LTC Robert J. McTasney (ENG)

(937) 255-3636 x4460 robert.mctasney@afit.edu

